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Abstract 

Purpose To determine if pelvic/ovarian and omental lesions of ovarian cancer can be reliably segmented on com‑
puted tomography (CT) using fully automated deep learning‑based methods.

Methods A deep learning model for the two most common disease sites of high‑grade serous ovarian cancer lesions 
(pelvis/ovaries and omentum) was developed and compared against the well‑established “no‑new‑Net” framework 
and unrevised trainee radiologist segmentations. A total of 451 CT scans collected from four different institutions were 
used for training (n = 276), evaluation (n = 104) and testing (n = 71) of the methods. The performance was evaluated 
using the Dice similarity coefficient (DSC) and compared using a Wilcoxon test.

Results Our model outperformed no‑new‑Net for the pelvic/ovarian lesions in cross‑validation, on the evaluation 
and test set by a significant margin (p values being 4 ×  10–7, 3 ×  10–4, 4 ×  10–2, respectively), and for the omental lesions 
on the evaluation set (p = 1 ×  10–3). Our model did not perform significantly differently in segmenting pelvic/ovarian 
lesions (p = 0.371) compared to a trainee radiologist. On an independent test set, the model achieved a DSC perfor‑
mance of 71 ± 20 (mean ± standard deviation) for pelvic/ovarian and 61 ± 24 for omental lesions.

Conclusion Automated ovarian cancer segmentation on CT scans using deep neural networks is feasible 
and achieves performance close to a trainee‑level radiologist for pelvic/ovarian lesions.

Relevance statement Automated segmentation of ovarian cancer may be used by clinicians for CT‑based volumet‑
ric assessments and researchers for building complex analysis pipelines.

Key points  
• The first automated approach for pelvic/ovarian and omental ovarian cancer lesion segmentation on CT images 
has been presented.

• Automated segmentation of ovarian cancer lesions can be comparable with manual segmentation of trainee radiologists.

• Careful hyperparameter tuning can provide models significantly outperforming strong state‑of‑the‑art baselines.
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Graphical Abstract

Background
After decades of unchanged treatment regimens for 
patients with ovarian cancer and little improvement 
in patients’ survival, this treatment landscape is cur-
rently changing, and an increasing number of therapeu-
tic options can be offered. For standard treatments with 
chemotherapy, the interpretation of oncological com-
puted tomography (CT) scans by an expert radiologist for 
evaluation of tumour spread usually includes only a small 
number of one- or two-dimensional lesion measure-
ments that typically follow response evaluation criteria 
in solid tumours guidelines (RECIST 1.1) [1]. However, 
these measurements are subjective, lack sensitivity for 
the early detection of treatment response and progres-
sion [2], and show only limited correlation with patient 
outcomes [3, 4]. Novel treatments like immunotherapy, 
for example, require dedicated guidelines [5] and often 
several months of treatment monitoring before pseudo-
progression can reliably be distinguished from response. 
The development of non-invasive imaging biomarkers 
for response assessment as well as patient selection for 
such treatments is still in its infancy [6]. Detailed volu-
metric response assessment as well as radiomics have the 
potential to improve clinical decision making for both, 
patients undergoing standard-of-care chemotherapy and 

novel treatments. However, both require manual seg-
mentation of the entire tumour burden by a radiologist. 
In advanced-stage ovarian cancer with multi-site perito-
neal disease, the detailed segmentation and annotation of 
a single scan can become a very time-consuming task and 
is only done for research purposes thus omitting poten-
tially relevant information from clinical decision-making.

Recently, deep neural networks based on the U-Net 
architecture [7] have shown promising results in chal-
lenging medical image segmentation problems. For 
example, the no-new-Net (nnU-Net) framework [8, 9] 
achieved state-of-the-art performance in various bio-
medical segmentation challenges, such as the Medi-
cal Segmentation Decathlon [10]. A recent survey also 
showed that nine out of ten top two performing teams 
in the 2020 MICCAI segmentation challenges are built 
using the nnU-Net framework as a baseline [11].

Deep neural networks are a promising solution for 
time-efficient and observer-independent segmentation 
of ovarian cancer lesions. Such methods allow volumet-
ric response assessment of the disease instead of the 
currently used RECIST 1.1. guidelines [1] and have the 
potential to reduce the manual annotation time [12, 13] 
allowing researchers to create large-scale datasets with 
high-quality segmentations. Such datasets enable the 
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creation of future disease quantification and response 
prediction tools to support clinical decision making and 
facilitate the development of clinical trials.

To the best of our knowledge, this is the first paper to 
propose a deep learning-based approach for the auto-
mated segmentation of the disease located in the pel-
vis/ovaries and omentum, which are the predominant 
disease sites. A recently proposed automated approach 
based on classical machine learning focused on perihe-
patic and perisplenic ovarian cancer metastases segmen-
tation [14, 15] but did not address the most common 
locations.

Methods
Datasets
Patients were recruited prospectively into the respec-
tive studies. All images used in this study were acquired 
per clinical request and subsequently collected after 
informed patient consent was obtained for use in 
research approved by the local ethical review board. 
We retrospectively collected scans using only contrast-
enhanced axial CT images from patients with high-
grade serous ovarian carcinoma (HGSOC). Additional 
information on the acquisition settings of the computed 
tomography examination is given in the Supplementary 
Materials. The diagnosis of HGSOC was confirmed in 
all patients through biopsy and histopathological analy-
sis. Patients without contrast-enhanced CT scans or with 
unclear histopathological diagnosis were excluded.

For this study, we had a total of 451 scans from four 
institutions and two countries available. As the major-
ity of data (n = 380) was obtained in the UK, we decided 
to use this part of the data for training and evaluation 
of the method. In particular, the larger subset (n = 276) 
obtained at Addenbrooke’s Hospital (Cambridge Uni-
versity Hospitals NHS Foundation Trust, Cambridge, 
UK) was used for training and the remaining scans 
(n = 104) from St. Bartholomew’s Hospital (Barts Health 
NHS Trust, London, UK) were used for evaluation. The 
remaining scans (n = 71) obtained in the Gynecologic 
Cancer of Excellence programme and the Cancer Imag-
ing Archive (https:// www. cance rimag ingar chive. net/) in 
the USA were used as a test set.

The patients across all datasets were treated with either 
immediate primary surgery (IPS) or three to six cycles 
of neoadjuvant chemotherapy (NACT). Among the 157 
patients in the training dataset, 119 were treated with 
NACT for which both pre- and post-treatment scans 
were available. The remaining 38 patients were treated 
with IPS for which only the pre-treatment scan was avail-
able. The scans in the evaluation set were obtained from 
53 patients who were treated with NACT. For all patients 
both pre- and post-NACT scans were available. However, 

two post-NACT scans were removed from the dataset as 
no disease was visible anymore after the treatment. All 
patients in the test data received IPS. Only pre-treatment 
scans are contained in this dataset.

The dataset compositions, including patient age, reso-
lution of the reconstructed images and quantitative 
measures of the two disease sites, are shown in Table 1, 
and further details describing the heterogeneity of the 
acquisition protocols are provided in the Supplementary 
Materials. Further information on the patients such as 
ethnicity and clinical condition were not available to us 
due to the anonymisation of the scans. Examples of the 
two disease sites are shown in Fig. 1.

Manual annotation
All manual segmentations were performed using the 
Microsoft Radiomics application (project InnerEye; 
https:// www. micro soft. com/ en- us/ resea rch/ project/
medical-image-analysis/), Microsoft, Redmond, WA, 
USA).

All segmentations used as ground truth in this study 
were either manually segmented or corrected by radiolo-
gist 1 (R.W.; consultant radiologist with 10 years of expe-
rience in oncological and gynaecological imaging). The 
training data set was segmented solely by R.W. The evalu-
ation data set was pre-segmented by a trainee radiologist 
(3  years of experience in oncological and gynaecologi-
cal imaging) and subsequently reviewed and corrected 
by R.W. For all scans in this dataset, both the unrevised 
trainee and the ground truth segmentations were avail-
able. The test set was segmented by H.S. (6 years of expe-
rience in oncological and gynaecological imaging) and 
reviewed by R.W. All segmentations in this dataset were 
found to be of satisfying quality; therefore, only one set 
of segmentations (ground truth) was available for these 
scans.

Deep learning model
As no literature exists on the segmentation of pelvic/
ovarian and omental lesions in ovarian cancer, we first 
used the three-dimensional (3D) full-resolution U-Net 
of the nnU-Net framework [8, 9] as a baseline for this 
segmentation task. The framework automatically adapts 
to new datasets, suggests model hyper-parameters and 
can be considered the current state of the art in 3D bio-
medical image segmentation [10, 11]. Our model was 
obtained by reimplementing the nnU-Net framework 
from scratch, benchmarking both implementations and 
performing extensive hyper-parameter optimisation. As 
already observed by the authors of nnU-Net [8, 9], we did 
not find an impact of minor architectural changes on the 
performance of our model. Instead, we decided to focus 

https://www.cancerimagingarchive.net/
https://www.microsoft.com/en-us/research/
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on fine-tuning the hyper-parameters suggested by the 
nnU-Net framework.

As with all current state-of-the-art 3D biomedical seg-
mentation networks, nnU-Net is based upon the U-Net 
architecture [7, 11]. For our dataset, nnU-Net suggested 
a simple U-Net with six stages, LReLU activation func-
tions, instance normalisation and 32 filters in the first 
block doubling at each stage. We found it beneficial 
to reduce the number of stages to four and replace the 
encoder with a ResNet [16] of 1, 2, 6 and 3 blocks per 
stage. The nnU-Net framework further suggests training 
the networks for 250,000 batches of size 2 using an SGD 
optimiser with Nesterov’s momentum of factor 0.99, 
weight decay of 3 ×  10–5 and a polynomial decaying learn-
ing rate from 0.01 to 0. We instead found it beneficial 
to increase the batch size to 4, the weight decay to  10–4, 
decrease the momentum to 0.98 and change the learning 
rate schedule to a linear ascent plus cosine decay with a 
maximum learning rate of 0.02.

The framework uses resizing of voxel spacing and 
Z-normalisation of the grey values as preprocessing 
and various spatial (rotation, scaling, flipping) and grey 
value-based (Gaussian noise, multiplicative scaling, con-
trast, blurring, gamma) transformations on the fly for 
data augmentation. During inference, a Sliding Window 

algorithm with Gaussian weighting and test-time aug-
mentations by evaluating all eight permutations of flip-
ping over x-, y- and z-axis was applied. We found no 
benefit in changing the pre-processing, data augmenta-
tion and evaluation based on the Sliding Window algo-
rithm; hence, they were left unchanged and applied as 
suggested by the authors of nnU-Net [8, 9].

Code and model availability
All code was developed using Python (version 3.9.4) as a 
programming language and the deep learning framework 
PyTorch (version 1.9.0). To make the training reproduc-
ible and share our model with the research community, 
we made the training code, inference code and model 
hyper-parameters and weights publicly available on our 
code GitHub repository at: https:// github. com/ Thoma 
sBudd/ ovseg.

Statistical analysis
To test whether differences in DSC were significant, we 
computed p values using the Wilcoxon test on paired 
results. These computations were performed using the 
Python package SciPy.

Table 1 Composition of the three datasets (total number of scans = 451) including information on voxel spacing and disease 
expression along all available time points

Due to the anonymisation of the datasets, no information on the ethnicity of the patients was prevalent and the patient age was not available in 14 out of 71 
patients in the test data. Additional information on the acquisition settings of the computed tomography examination is given in the Supplementary Materials. NACT  
Neoadjuvant chemotherapy

Dataset Training Validation Test

Number of scans 276 104 71

 Pretreatment scans 157 53 71

 Post‑NACT scans 119 51 0

Patient age [years]

 Median 65.5 65.5 63

 Min–max 29–90 35–85 41–80

Pixel spacing [mm]

 Median 0.68 0.76 0.77

 Min–max 0.53–0.93 0.61–0.96 0.57–0.98

Slice thickness [mm]

 Median 5.0 5.0 5.0

 Min–max 1.25–5.0 1.5–5.0 2.0–7.5

Pelvic/ovarian tumour

 Number of scans showing tumour in this location 246 102 69

 Mean volume  [cm3] 275 241 381

 Mean number of connected components 2.4 2.6 2.4

Omental tumour

 Number of scans showing tumour in this location 198 98 56

 Mean volume  [cm3] 119 197 146

 Mean number of connected components 6.7 5.3 5.7

https://github.com/ThomasBudd/ovseg
https://github.com/ThomasBudd/ovseg
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Results
Performance assessment
All metrics were only computed on scans containing 
the corresponding disease site. The results (expressed as 
mean ± standard deviation) are summarised in Fig. 2 and 

Supplementary Table S1. Both nnU-Net and our model 
were trained using a five-fold cross-validation scheme 
ensuring that two scans of the same patient are con-
tained in the same fold. In cross-validation, the models 
achieved a mean DSC of 66 versus 69 (p = 5 ×  10–7) for the 

Fig. 1 Examples of three‑dimensional volume renderings (a–d, i–l) and axial slices (e–h, m–p) for pelvic/ovarian and omental lesions of high‑grade 
serous ovarian carcinoma patients. For each example, the ground truth tumour volume (Vol) and number of connected components (#CCs) are 
shown. The scans shown were all contained in the training set and selected such that their lesion volume equals the 25, 50, 75, and 90 percentiles 
of the lesion volume in the training set (left to right). The horizontal green line in the rendering visualisations corresponds to the axial slice shown 
below. Both disease sites demonstrate a great variability of disease expression among different patients, which poses a great challenge for manual 
and automated segmentation methods
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pelvic/ovarian and 50 versus 52 (p = 0.203) for the omen-
tal lesions. The mean DSC performance on the evalua-
tion set was 62 versus 66 (p = 1 ×  10–4) and 43 versus 48 
(p = 1 ×  10–3) for the pelvic/ovarian and omental lesions. 
The test set performance in terms of mean DSC was 69 
versus 71 (p = 0.042) and 60 versus 61 (p = 0.123) for pel-
vic/ovarian and omental lesions. The statistical signifi-
cance of the difference in performance was confirmed 
by swapping the training set with the merged evaluation 
and test set and repeating training and inference with 
results being summarised in Supplementary Table 2. We 
suspected that the performance discrepancy between 
the evaluation and test set was caused by differences in 
disease distribution as the patients in the evaluation set 
qualified for NACT and the patients in the test set for 
IPS as a treatment. To investigate whether this difference 
might have an impact on the performance, we split the 
training set by applied treatment and evaluated the cross-
validation performance of our model on the subsets. For 
pelvic/ovarian lesions, the model achieved a mean DSC 
value of 67 (n = 206) versus 77 (n = 40), whereas for omen-
tal lesions of 52 (n = 176) versus 53 (n = 22) for the subset 
of patients that received NACT and IPS, respectively.

To investigate the effect of increasing training data-
set size, we additionally trained three distinct networks 
on the full training data (n = 276) instead of relying on 

five-fold cross-validation which uses only 80% of the 
training data (n = 220) per fold and compared the results 
to nnU-Net. The achieved performance in terms of 
mean DSC was 66 (p = 1 ×  10–4) and 51 (p =  10–6) on the 
evaluation set and 72 (p = 4 ×  10–3) and 64 (p = 5 ×  10–3) 
on the test set for pelvic/ovarian and omental lesions, 
respectively.

Furthermore, we compared the DSC values achieved 
by nnU-Net and our model (trained in five-fold cross-
validation) with the trainee radiologist on the evalua-
tion set. Both models performed significantly worse than 
the trainee radiologist for the segmentation of omental 
lesions (p = 1 ×  10–7 and 6 ×  10–6). However, considering 
the pelvic/ovarian lesions, nnU-Net performs signifi-
cantly inferior to the trainee radiologist (p = 0.041), while 
there was no such significant difference between our pro-
posed model and the trainee radiologist (p = 0.371).

Additionally, we compared the disease volume of the 
ground truth with the automated annotations of our 
proposed model. Despite the presence of some outliers, 
Fig. 2 shows close agreement in volume for both disease 
sites considering the volume comparison of individual 
scans (second column) and the difference of pre- and 
post-NACT volume. The Bland–Altman plot shows that 
on average the ground truth volume is greater than the 
predicted volume for both sites.

Fig. 2 Evaluation of model performance on unseen datasets in terms of DSC (a, e) and volume (b–d, f–h). Trainee radiologist segmentations 
were only available on the evaluation set. The brackets indicate significant differences. All volumes are given in  cm3. It can be observed in panels 
a and e that our method outperforms the nnU‑Net baseline for both sites on the evaluation and test set and that our method does not perform 
significantly different from a trainee radiologist in segmenting pelvic/ovarian lesions in contrast to nnU‑Net. Panels b–d and f–h suggest 
that the model in its current state can be used to determine disease volume for both sites. DSC Dice similarity coefficient, nnU-Net No‑new‑Net
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Examples of automated and trainee radiologist seg-
mentations are presented in the left and middle columns 
of Fig. 3.

Outlier and error analysis
To assess common errors and outliers, the evaluation and 
test set were pooled (n = 175) and inspected visually and 
quantitatively.

Low DSC values were regularly found on scans with 
low ground truth volume. In the subset of scans with the 
bottom 25% DSC performance, lower median disease 
volume was found compared to the full set (omentum, 6 
versus 21  cm3; pelvis/ovaries, 9 versus 37  cm3). Vice versa, 
on the scans with the 25% lowest volumes, lower mean 
DSC performance was found when compared to the full 
set (omentum, 35 versus 55; pelvis/ovaries, 46 versus 68).

A visual evaluation revealed common false positive 
predictions in the extreme ends of the scan volumes 
outside of anatomic regions where disease commonly 
occurs. On 41 scans, the omental disease was falsely 
annotated in breast tissue, in 13 cases near the scapulae 
and in five cases, false-positive annotations were found 
in the thighs. Examples of such false-positive annotations 
can be found in the right column of Fig. 3.

To better understand the influence of false-positive and 
false-negative predictions, we computed the sensitivity 
and precision. For both disease sites, the sensitivity was 

found to be lower than the precision (omentum, 52 ver-
sus 70; pelvis/ovaries, 69 versus 73).

Another source of error was the confusion between 
classes. We found that in 12 out of 170 cases contain-
ing pelvic/ovarian disease, at least parts of the ground 
truth annotation intersected with automated annotation 
of the omental disease. Vice versa in 18 out of 155 scans 
containing omental disease at least one voxel of omen-
tal disease was marked as pelvic/ovarian disease by the 
algorithm. Even to the trained radiologist’s eye, it can be 
challenging to distinguish between extensive pelvic and 
omental disease when tumours form conglomerates.

Discussion
This work presents the first automated deep learning-
based ovarian cancer CT segmentation approach for the 
two main disease sites: the pelvis/ovaries and the omen-
tum, while previous work only addressed less common 
disease sites [14, 15]. While the relatively low DSC val-
ues suggest inferior performance compared to expert 
consultant radiologists, we could demonstrate similar 
performance to a trainee radiologist with 3 years of expe-
rience for pelvic/ovarian lesions despite the complexity of 
the disease and using only a few hundred scans for train-
ing. Moreover, we demonstrated that our model signifi-
cantly outperforms the well-established state-of-the-art 
framework nnU-Net for the segmentation of the pelvic/

Fig. 3 Examples of ground truth, automated and trainee radiologist segmentations (pink, cyan and blue, respectively). The first two columns (a, b, 
d, e) show the cases with median and 90‑percentile DSC from the pooled validation and test set. The visual comparison between the automatically 
generated and manual trainee radiologist segmentation demonstrates typical mistakes of the two instances. Both seem to struggle 
with the inclusion and exclusion of objects close to the segmentation boundary. The last column (c, f) shows examples of outliers at the extreme 
ends of the volumes. The segmentation model confused dense components of breast tissue with omental disease as both are embedded in fat
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ovarian lesions and generalises to a test set from a dif-
ferent country. The heterogeneity of the disease between 
patients was demonstrated in Fig.  1. This causes great 
challenges for both manual and automated segmentation 
and might be the main reason for the performance gap 
between our model and the ground truth. Furthermore, a 
gap in performance for the segmentation of omental dis-
ease was found between the trainee radiologist and the 
proposed method. This might be due to the difficulty of 
the segmentation task as omental disease often exhib-
its poor contrast and irregular shape and sparse depos-
its. Our analysis also suggested that the proposed model 
might perform better on scans of patients treated with 
IPS (n = 38 in cross-validation and test set) compared 
to those treated with NACT (n = 238 in cross-validation 
and evaluation set). Another reason for the performance 
differences between the evaluation and test set might be 
differences in patient stratification between the two dif-
ferent countries of origin (UK versus USA).

We believe that the model in its current form is already 
of clinical relevance. Previous approaches have already 
demonstrated that deployed deep learning models can 
decrease the manual preparation time in clinical routines 
[12] and in research settings for the creation of large-
scale datasets [13]. These datasets might ultimately allow 
the creation of sophisticated chemotherapy response or 
survival prediction models [17] and improve patient care. 
Further, Fig.  2 suggests that the model might be ready 
to allow volumetric assessment of the disease without 
requiring manual interventions. This might be of par-
ticular interest to centres without specialisation in high-
grade serous ovarian cancer.

Our main limitations are the following. The difference 
between sensitivity and precision, which was especially 
large for the omental lesions, indicates that the DSC 
can be further improved by careful calibration of the 
model parameters as suggested in [18], which were not 
exhaustively included in this work due to limitations of 
the computational budget. This might also be a solu-
tion for underestimation of disease volume as shown in 
the Bland–Altman plots of Fig. 2. The false positive pre-
dictions in the extreme ends of the scans, such as the 
breast tissue and the lower limbs, might be removed in 
two different ways. Firstly, organ segmentation [13] can 
be applied to identify the regions in which the lesions 
typically occur. Secondly, the patch sampling scheme can 
be modified as the currently employed schemes under-
sample the extreme ends of the volumes. Next, combin-
ing the proposed convolutional neural network model 
with other models such as ones based on transformers 
or tumour-sensitive matching flow can be attempted to 
improve the performance. For example, a recently intro-
duced vision transformer-based framework has shown 

lower performance when being compared against nnU-
Net but could demonstrate that the ensembling of both 
methods outperformed the standalone frameworks [19]. 
In addition, future approaches should integrate the other 
disease sites of HGSOC into automated segmentation 
approaches. However, those that occur less frequently are 
on average of lower volume and often spread throughout 
the whole abdomen and beyond, thus imposing chal-
lenges for automated segmentation models. For the train-
ing of future models, it is also desirable to have access to 
larger datasets with high-quality annotations. This was 
not available to us in this initial study as annotations are 
time-consuming to obtain and experts for this disease 
are rare. We believe that larger datasets along with con-
tinuously exploring new training methods will help close 
the performance gap between the consultant radiolo-
gists and the deep learning model. Furthermore, we plan 
to extensively test more variations in architecture, such 
as network scale or using transformers or novel convo-
lutional residual blocks, and hyper-parameters, such as 
augmentation methods and loss functions, with the goal 
of obtaining an even better performing automated seg-
mentation model.

To summarise, we presented the first deep learning-
based approach for ovarian cancer segmentation on CT 
and the first automated approach for the segmentation 
of pelvic/ovarian and omental lesions and demonstrated 
both state-of-the-art performance, as well as common 
errors of our method.

Abbreviations
3D  Three‑dimensional
CT  Computed tomography
DSC  Dice similarity coefficient
HGSOC  High‑grade serous ovarian carcinoma
IPS  Immediate primary surgery
NACT   Neoadjuvant chemotherapy
nnU‑Net  No‑new‑Net
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s41747‑ 023‑ 00388‑z.

Additional file 1: Supplementary Table 1. Model and trainee perfor‑
mance on unseen datasets in terms of DSC (mean ± std). Results on the 
training set were computed using the cross‑validation predictions, thus 
no scores are available for the model trained on 100% of the training data. 
Significant differences compared to nnU‑Net and the trainee our model 
and the baseline and the trainee and our model are marked with the 
symbols * and an §, respectively. Trainee radiologist segmentations were 
only available on the evaluation set. Our implementation is publicly avail‑
able at https:// github. com/ Thoma sBudd/ ovseg. Supplementary Table 2. 
Model and trainee performance on unseen datasets in terms of DSC 
(mean ± std) obtained by swapping the training set with the evaluation 
and test set. Significant differences compared to nnU‑Net and the trainee 
are marked with the symbols * and an §, respectively. Trainee radiologist 
segmentations were only available on the evaluation set. Our implemen‑
tation is publicly available at https:// github. com/ Thoma sBudd/ ovseg. 
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Supplementary Figure 1. Comparison of the model’s performance in 
terms of DSC on scanners from different manufacturers. Supplementary 
Figure 2. Training and validation curve over the course of one full training. 
Each epoch was defined as 250 training batches. The validation error was 
estimated by aggregating the loss of 25 batches.
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