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Abstract 

Metabolic dysfunction‑associated fatty liver disease (MAFLD), previously called metabolic nonalcoholic fatty liver 
disease, is the most prevalent chronic liver disease worldwide. The multi‑factorial nature of MAFLD severity is deline‑
ated through an intricate composite analysis of the grade of activity in concert with the stage of fibrosis. Despite 
the preeminence of liver biopsy as the diagnostic and staging reference standard, its invasive nature, pronounced 
interobserver variability, and potential for deleterious effects (encompassing pain, infection, and even fatality) 
underscore the need for viable alternatives. We reviewed computed tomography (CT)‑based methods for hepatic 
steatosis quantification (liver‑to‑spleen ratio; single‑energy “quantitative” CT; dual‑energy CT; deep learning‑based 
methods; photon‑counting CT) and hepatic fibrosis staging (morphology‑based CT methods; contrast‑enhanced 
CT biomarkers; dedicated postprocessing methods including liver surface nodularity, liver segmental volume ratio, 
texture analysis, deep learning methods, and radiomics). For dual‑energy and photon‑counting CT, the role of virtual 
non‑contrast images and material decomposition is illustrated. For contrast‑enhanced CT, normalized iodine concen‑
tration and extracellular volume fraction are explained. The applicability and salience of these approaches for clinical 
diagnosis and quantification of MAFLD are discussed.

Relevance statement
CT offers a variety of methods for the assessment of metabolic dysfunction‑associated fatty liver disease by quantify‑
ing steatosis and staging fibrosis.

Key points
• MAFLD is the most prevalent chronic liver disease worldwide and is rapidly increasing.

• Both hardware and software CT advances with high potential for MAFLD assessment have been observed in the last 
two decades.

• Effective estimate of liver steatosis and staging of liver fibrosis can be possible through CT.
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Graphical Abstract

Background
Metabolic dysfunction-associated fatty liver disease 
(MAFLD), previously called metabolic nonalcoholic fatty 
liver disease, NAFLD, is a major risk factor for chronic 
liver disease, which affects approximately a quarter of the 
population worldwide [1, 2]. It is characterized by a path-
ological spectrum of severity with steatosis exceeding 5% 
in the hepatocytes, including alcohol-induced steatosis 
or concomitant secondary hepatic fat accumulation [1]. 
MAFLD can range from simple hepatocellular steatosis 
to steatohepatitis and liver fibrosis, which ultimately may 
lead to hepatocellular carcinoma, liver failure, and even 
death [3]. Furthermore, MAFLD is strongly linked to the 
occurrence and development of cardiovascular diseases 
[4].

MAFLD is mainly pathologically characterized 
by hepatocyte steatosis, hepatocyte ballooning 
degeneration, lobular inflammation, and fibrosis. The 
severity of MAFLD is best described by combining the 
stage of fibrosis with the grade of activity [1]. The degree 
of liver fibrosis is a crucial independent prognostic 
factor for mortality and morbidity due to liver disease in 
MAFLD patients. Therefore, an accurate assessment of 
hepatic steatosis and fibrosis is crucial in the diagnosis 
and treatment of MAFLD [5]. Liver biopsy has long been 

the reference standard for accurately evaluating steatosis 
and the degree of fibrosis [6]. Nevertheless, liver biopsy 
has some limitations, including sampling error, intra- 
and inter-observer variability, and invasiveness, which is 
associated with risks such as infection, pain, perforation 
of the organs near the liver, bleeding and, in rare cases, 
even death [7]. As such, it is essential to develop practical, 
robust, and cost-effective tests for the diagnosis, staging, 
and monitoring of MAFLD. Non-invasive modalities 
based on serum markers and imaging examinations, 
which circumvent the limitations of liver biopsy, have 
been developed for routine use in clinical practice [8, 9].

Imaging techniques have been used for the evaluation 
of steatosis and assessment of liver fibrosis severity in 
MAFLD for nearly two decades (Fig.  1). The current 
reference standards for non-invasive measurement 
of hepatic steatosis include magnetic resonance 
spectroscopy and magnetic resonance imaging-
proton density fat fraction (MRI-PDFF) [10, 11]. 
However, their high cost and limited availability limit 
their widespread use in clinical practice. Ultrasound 
has been widely used to assess hepatic steatosis in 
clinical settings because of its low cost and availability. 
Emerging quantitative ultrasound elastographic 
techniques are also being developed and validated for 
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the diagnosis of hepatic steatosis and fibrosis [12–14]. 
However, the accuracy of ultrasound-based methods is 
affected by various factors, such as the level of obesity 
and the serum alanine aminotransferase [15].

CT can also measure liver fat [16, 17] and has been 
proven to be effective for detecting steatosis [17–21], 
but it exposes patients to ionizing radiation. None-
theless, the CT-based quantification of MAFLD is an 
attractive diagnostic method as CT exams including 
the liver are common in clinical practice and it can 
be performed to quantify liver fat without additional 
radiation exposure. Furthermore, CT-based imaging 
biomarkers are increasingly used to diagnose and stage 
hepatic fibrosis [22–26], as they can be retrieved quan-
titatively, retrospectively, and rapidly using automated 
systems [24, 25]. Hence, CT liver fat measurement 
could  be an effective method for the screening and 
diagnosis of MAFLD. This article reviews recent stud-
ies on CT techniques for hepatic steatosis quantifica-
tion and CT-based tools for staging hepatic fibrosis and 
discusses their practical application in routine clinical 
diagnosis and quantification of MAFLD.

Estimation of liver steatosis
The traditional methods of conventional CT diagnosis of 
hepatic steatosis are based on liver Hounsfield units (HU) 
difference between liver and spleen, typically the liver-to-
spleen ratio. These methods classify steatosis as normal, 
mild, moderate, or severe [19, 26–29]. HU is a unit of 
measurement used to measure the density of a local tis-
sue or organ in the body as seen in CT scan. HU can be 
calculated using the following formula:

where μ is the CT linear attenuation coefficient and μair is 
almost zero and can be ignored

However, these methods merely provide a qualita-
tive or semi-quantitative assessment of liver fat content 
and have been deemed accurate for moderate-to-severe 
steatosis but insensitive to mild steatosis [21]. Addition-
ally, the outcomes are susceptible to variations in scan-
ning conditions, including different tube voltages and 
usage of CT scanners from various manufacturers [30]. 

HU =
µmaterial − µwater

µwater − µair
× 1000

Fig. 1 Comparison of ultrasound, CT, and MR for the diagnosis and monitoring of MAFLD. MAFLD Metabolic dysfunction‑associated fatty liver 
disease, CT Computed tomography, MRI Magnetic resonance imaging, US Ultrasound
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Furthermore, these evaluation methods cannot detect 
early stages of liver fibrosis based on fatty liver. Recently, 
various quantitative and reliable technologies based on 
CT have been developed and validated for evaluating the 
presence of steatosis and have high accuracy than the tra-
ditional methods of conventional CT. We summarized 
the CT-based technologies for quantitative evaluation of 
hepatic steatosis in Table 1, along with several represent-
ative studies presented in Table 2.

Single‑energy “quantitative” CT (QCT)
This technique was initially developed to measure bone 
mineral density [36]. QCT converts HU measurements 
into tissue densities by scanning a phantom with 
standards corresponding to the known density of bone 
and soft tissue [37]. Using QCT phantom, which includes 
water and fat standards, CT HU can be used to estimate 
tissue fat content, as adiposity negatively correlated 
with decreasing HU. In a study, a 120-kVp QCT scan 

Table 1 Quantitative evaluation of hepatic steatosis using computed tomography

CT Computed tomography, CTFF CT fat fraction, HU Hounsfield units, MMD Multi-material decomposition, TNC True non-contrast, VNC Virtual non-contrast

CT‑based tools Principles Acquisition methods

Deep learning Automated algorithms for liver segmentation and analysis All voxels designated as liver by the segmentation algo‑
rithm were analyzed, and the mean and median HU were 
computed

Quantitative CT Using a scanner with a five‑rod calibration phantom with an aque‑
ous  K2HPO4 bone density standard placed beneath the partici‑
pants

CTFF =  (HUlean ‑HUliuer)/(HUlean—HUfat)
HUliver is the measurement in Hounsfield units in the liver
HUlean is the value in Hounsfield units for fat‑free liver tissue
HUfat is the value for 100% fat

Dual‑energy CT It provides information about tissue composition VNC and iodine maps; TNC images; MMD algorithm

Deep learning Automated algorithms for liver segmentation and analysis All voxels designated as liver by the segmentation algo‑
rithm were analyzed, and the mean and median HU were 
computed

Photon‑counting CT It is able to detect and weight individual photons based on their 
energies

TNC and VNC images

Table 2 Summary of CT studies for quantitative evaluation of hepatic steatosis

AUROC Area under the receiver operating characteristic curve, DECT Dual-energy computed tomography, FVF Fat volume fraction, HU Hounsfield units, MMD Multi-
material decomposition, MR-PDFF Magnetic resonance imaging-derived proton density fat fraction, NPV Negative predictive value, PPV Positive predictive values, QCT 
Quantitative CT, VNC Virtual non-contrast

First author 
[Reference]

Number 
of 
patients

Methods Reference standard AUROC or positive 
and negative 
predictive value

Sensitivity Specificity

Pickhardt [31] 1,204 Deep learning MR‑PDFF Steatosis ≥ 5%: 0.669
Steatosis ≥ 10%: 0.854
Steatosis ≥ 15%: 0.962

Steatosis ≥ 5%: 34.0% 
Steatosis ≥ 15%:75.9%

Steatosis ≥ 5%: 94.2% 
Steatosis ≥ 10%: 95.7%

Guo [16] 400 QCT MR‑PDFF Steatosis ≥ 5%: 0.87
Steatosis ≥ 14%: 0.99

Steatosis ≥ 5%:75.9%
Steatosis ≥ 14%:84.8%

Steatosis ≥ 5%: 83.3% 
Steatosis ≥ 14%: 98.4%

Hyodo [32] 33 DECT FVF Histologic FVF discrimination 
between histologic 
grade 0 and grades 
1–3: 0.88

Cut‑off 4.6% for FVF: 
82%

Cut‑off 4.6% for FVF: 
100%

Cao [33] 50 DECT MMD Pathological FVF correlated well 
with the pathological 
grades: 0.92

89.2% 100%

Zhang [34] 128 DECT VNC MR‑PDFF Steatosis > 6%: 0.834 
and 0.872 in the right 
and left lobe

57%/93.9% (right) 67.9%/90% (left)

Niehoff [35] 140 PCD‑CT VNC Previous reported cut‑
off values for diagnos‑
ing hepatic steatosis 
(CT (L) ≤ 40 HU, CT 
(L‑S) ≤ ‑10 HU, CT 
(L/S) ≤ 0.8

PPV and NPV 
for the detection 
of hepatic steatosis: 
30% and 99.5%
When adjusting 
cut‑off values: 41% 
and 99.6%

PPV and NPV: 94%
When adjusting cut‑
off values: 94%

PPV and NPV: 87%
When adjusting cut‑off 
values: 92%
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of the liver was used to measure the fat content. Single-
energy QCT-derived percentage of liver fat content was 
calculated using the following equation [37]:

Compared with traditional semiquantitative CT 
approaches, QCT can directly measure liver fat content 
and the calibration phantom can be used for multi-center 
studies. QCT significantly decreases the variability in HU 
measurements due to factors such as x-ray filtration, kVp, 
patient size, and splenic HU variation.

Peripheral QCT has been used in small animal mod-
els to assess body and liver fat [38]. Xu et al. [39] verified 
this method by comparing QCT liver fat measurements 
in goose liver samples with those obtained from bio-
chemical analysis and chemical shift-encoded MRI. Guo 
et  al. [16] validated the accuracy of QCT in measuring 
hepatic steatosis content using chemical shift-encoded 
MRI-PDFF as a standard in a large prospective cohort of 
healthy individuals. Furthermore, in a subsequent study, 
the researchers compared the prevalence of hepatic stea-
tosis among Chinese and American cohorts using QCT 
measurements and found a strong correlation between 
the QCT liver fat measurement and MRI-PDFF deter-
mined using the mDixon Quant software [40]. Those 
studies collectively demonstrated the potential of quan-
titative computed tomography (QCT) as a reliable and 
accurate method for hepatic steatosis quantification. 
The findings underscore its usefulness in noninvasively 
assessing liver fat content in various cohorts. QCT holds 
promise as a valuable tool in clinical and research settings 
for hepatic steatosis evaluation. Further investigations 
and standardized protocols will aid in its widespread 
adoption and integration into routine clinical practice.

Dual‑energy CT (DECT)
This is a qualitative and quantitative modality that 
obtains multi-material decomposition based on the 
attenuation measurements of x-rays at multiple diverse 
energies to differentiate and quantify the composition 
of the target [41]. Over the past decade, DECT has been 
increasingly employed for quantifying hepatic steatosis 
in phantom, animal, and clinical studies and showing 
promise over conventional CT imaging due to its ability 
to accurately quantify fat content [42–44].

However, Artz et  al. [45] reported that the fat (water) 
content measurements strongly correlated with triglyc-
erides in a phantom but not as well in vivo. Additionally, 
there have been differing opinions on the superiority of 
DECT over conventional single-energy CT and contrast-
enhanced DECT for quantitatively assessing liver steatosis 

%fat =

{

HUlean − HUliver

HUlean − HUfat

}

× 100%

[18, 46]. Despite these variations, several principal stud-
ies have demonstrated the accuracy and reproducibility of 
DECT for quantitative assessment of liver fat, making it 
suitable for clinical use [32, 33, 47]. Zhang et al. [34] dem-
onstrated that attenuation at virtual non-contrast (VNC) 
images of DECT had a moderate correlation with liver fat 
content and > 90% specificity for diagnosis attenuation at 
virtual non-contrast (VNC) images of DECT had a mod-
erate correlation with liver fat content and > 90% specificity 
for diagnosis in fatty liver. In another research by Molwitz 
et al. [48] developed a fat quantification method based on 
dual-layer detector-based spectral, a detector-based DECT 
scanner, which demonstrated strong agreement with MRI 
techniques for patient liver and muscle.

By focusing on these principal studies, we can better 
understand the strengths and limitations of DECT in quan-
tifying liver fat and appreciate its potential clinical utility. 
Contrast-enhanced DECT demonstrates high specificity 
in evaluating hepatic steatosis through VNC attenuation 
of the liver, making it a promising tool for the early and 
incidental detection of fatty liver disease. However, hepatic 
iron deposition might be the most significant influenc-
ing factor for DECT in the quantitative assessment of liver 
steatosis. The potential for future application of an iron-
specific multi-material decomposition algorithm in DECT 
may enable quantitative assessment of liver steatosis while 
effectively correcting for the influences of iron and iodine 
in the liver.

Deep learning (DL)‑based methods
The application of artificial intelligence, in particular 
machine learning, has improved the accuracy of MAFLD 
diagnostic techniques. DL is a branch of machine learning 
commonly using convolutional neural networks. In 
Fig.  2, a flowchart of DL methods for liver assessment, 
which includes three layers is shown: input, hidden, and 
output. The input liver image is automatically delineated 
by the U-net structure. The hidden layers perform 
convolution and pooling of images, which are then fed to 
the fully connected layers. To generate high-dimensional 
manageable features, convolution and pooling of input 
images are repeated before feeding analyzed features 
of input imaged into fully connected layers for the 
classification task. Finally, probabilities for the classes 
are returned by the output layer. The loss function was 
calculated as follows:

Loss = 1−
2
∑C

c=1wc

∑M
m=1PcmGcm

∑C
c=1wc

∑M
m=1

(

P2cm +G2
cm

)
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where P represents the predicted image and G denotes 
the corresponding ground truth; C represents the num-
ber of classes; M represents the number of elements in P 
or G ’s first two dimensions; and wc represents the weight-
ing factor for each class. The Dice coefficient is calculated 
using the following formula:

where Pc and Gc represent the predicted image and 
ground truth of each class, respectively ( C =  1, 2). For 
each class, Jaccard’s index is calculated as follows:

Several studies have evaluated the performance of 
DL-based CT  in liver fat quantification for MAFLD 
assessment in recent years. Kullberg et  al. [49] used 
DL to analyze CT data to develop and validate an 
automated image-processing technique for analyzing 

wc =
1

(
∑M

m=1Gcm)
2

Dice = 2
Pc ∩Gc

Pc + Gc

Jaccard =
Pc ∩Gc

Pc ∪ Gc

body composition, including liver fat. Graffy et  al. [25] 
proposed an automated liver segmentation tool based 
on deep learning was validated by retrospectively 
quantifying liver fat in 9,552 consecutive patients. 
In other studies, DL volumetric liver segmentation 
algorithm was used to evaluate liver fat based on 
contrast-enhanced CT images, which achieved high 
accuracy as an objective tool for assessing hepatic 
steatosis [31]. However, as this method does not exclude 
liver vessels, which have a higher HU value, it may 
overestimate liver attenuation. To reduce the vessel 
effects, Huo et al. [50] proposed a method that combines 
deep learning and morphological operations for accurate 
estimation the liver attenuation in peripheral regions of 
interest. Overall, these studies show the potential of deep 
learning technology for segmentation, quantification, and 
standardization of diagnosis in patients with MAFLD. In 
the future, this fully automated CT tool may be used in 
investigations with larger retrospective cohorts since it 
provides both rapid and objective assessment.

Photon‑counting CT (PCCT)
In 2021, the first clinical PCCT scanner using a photon-
counting detector with quantum technology to enhance 

Fig. 2 Flowchart of deep learning for fatty liver. CT Computed tomography
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the capability of spectral imaging, was introduced, taking 
CT technology to the next level. This has enabled PCCT 
technology to be used for true multi-energy CT scan-
ning, as demonstrated by several preclinical and clinical 
studies [51, 52]. PCCT is an evolution in CT data collec-
tion methods within the realm of energy. It can produce 
material-specific or virtual monoenergetic images from 
CT data similar to DECT. Compared with conventional 
CT detectors, photon-counting detectors can detect and 
measure single photons and their energy because they are 
composed of one thick layer of semiconductor material 
[53, 54]. In addition, in contrast to DECT, PCCT has the 
potential to improve material decomposition, especially 
materials with K-edges in the diagnostic energy range 
[55]. It has been demonstrated that PCCT can accurately 
measure calcium, gadolinium, and iodine concentrations 
in phantoms [56, 57].

PCCT systems are currently under preclinical test-
ing, mostly using phantoms, animal models, ex vivo tis-
sue or cadavers. Some authors speculate that due to 
their improved spectral separation capacity, PCCT could 
improve the selective recognition and removal of iodine 
from contrast-enhanced CT images, obtaining more 
realistic VNC images [53, 58]. Currently, however, den-
sity measurements obtained with the first clinical PCCT 
have a limited diagnostic value. In one study, the liver 
parenchyma was found to differ by approximately 11 HU 
between VNC and true non-contrast images [59]. How-
ever, the accuracy of PCCT very likely will improve in the 

coming years. One research established that PCCT could 
be used to reconstruct phantom and patient VNC images 
of the liver with accurate attenuation value and without 
the effects of dose, base material’s attenuation, and liver 
iodine content [60]. Additionally, a recent research by 
Niehoff et  al. [35] showed that using the spectral data-
sets obtained from the first clinical PCCT scanner good 
VNC images could be reconstructed for hepatic steatosis 
assessment, and all indices showed high sensitivity and 
specificity even after changing the cut-off values. Despite 
being the latest technology for CT imaging, PCCT can 
benefit from further technical advancement to improve 
its capability to detect and quantify hepatic steatosis.

Staging of liver fibrosis
As the degree of hepatic fibrosis is strongly associated 
with both carcinogenesis and prognosis, a precise 
assessment is essential for determining its clinical course 
and prognosis of the patient. For patients with MAFLD, 
non-invasive diagnosis and staging of liver fibrosis is 
crucial for assessing disease progression. Techniques 
such as elastography measure the velocity of the ‘sheer 
wave’ or tissue displacement due to liver fibrosis to 
quantify how the organ “stiffers” based on ultrasonic 
or physical impulse. Ultrasound-based modalities, 
including vibration-controlled transient elastography, 
two-dimensional shear wave elastograghy, point shear 
wave elastography, and magnetic resonance elastography, 
are advanced elastography technologies for evaluating 

Fig. 3 Computed tomography findings of liver fibrosis at each stage. a Fibrosis grade 0 (F0): normal liver. b Fibrosis grade 1 (F1): no significant 
change in liver volume and increased volume of spleen. c Fibrosis grade 2 (F2): the liver volume is slightly reduced. d Fibrosis grade 3 (F3): portal 
vein thickening, spleen enlargement, and minimal ascites are visible. e Fibrosis grade 4 (F4): liver with an irregular shape and ascites are visible
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liver fibrosis. However, increasingly, CT biomarkers are 
being  used  to detect and stage hepatic fibrosis (Fig.  3). 
Current CT methods for detecting liver fibrosis on 
abdominal CT rely on morphology-based score, contrast-
enhanced imaging biomarkers, and post-processing 
methods. We summarized the CT-based technologies for 
estimation of hepatic fibrosis (Table 3) and representative 
studies (Table 4).

Morphology‑based methods
Quantitative metrics for assessing hepatic fibrosis 
based on abdominal CT scans are reproducible, require 
no postprocessing of the images, and can distinguish 
cirrhotic livers from normal livers with high accuracy. 
They include caudate-right-lobe ratio (CRL-R) [61], the 
liver imaging morphology and vein diameter fibrosis 
score (LIMV-FS) [62], liver imaging morphology and 
attenuation fibrosis score (LIMA-FS), and liver imaging 
morphology and vein diameter and attenuation fibrosis 
score (LIMVA-FS) [63]. And those studies showed that 
those morphology-based assessments of CT indicators 
have clinical utility in evaluating the in patients with 
chronic liver disease, even in the pre-cirrhotic stages of 
liver fibrosis [61–63]. Notably, enhancement of these 
scores (LIMVA-FS and LIMA-FS) were better that purely 

morphology-based CRL-R score [63]. In addition, these 
quantifiable metrics can be calculated retrospectively on 
axis planes without time-consuming post-processing and 
those methods may be easily applied to retrospective CT 
data analysis. Nonetheless, such linear measurements of 
liver may not capture all complex changes underlying its 
morphology.

Contrast‑enhanced biomarkers
CT has limited accuracy in quantifying hepatic fibrosis 
due to insufficient differences in mass attenuation coeffi-
cient between fibrous liver tissue and normal liver tissue. 
However, fibrosis can be indirectly measured using con-
trast media as a marker [80]. Markers such as normalized 
iodine concentration (NIC) and hepatic extracellular vol-
ume fraction (ECV) can individually estimate the degree 
of early hepatic fibrosis in animal and clinical studies. 
Compared with healthy liver, liver cirrhosis absorb differ-
ent iodine contrast agents differently during the arterial 
phase and the venous phase.

NIC, computed as the ratio of liver and aorta contrast 
concentration during the venous phase, is utilized in 
DECT imaging to diagnose and stage liver cirrhosis [64–
66, 81]. Lv et al. [64] analyzed 38 cirrhosis patients and 43 
liver-healthy patients, finding that NIC during the venous 

Table 3 CT methods assessing hepatic fibrosis

AP Arterial phase, CRL-R Caudate-right-lobe ratio, CLD Caudate lobe diameter, TA Texture analysis, DLS Deep learning system, ECV Hepatic extracellular volume, HU 
Hounsfield units, Hct 1-hematocrit, IC Iodine concentration, LSN Liver surface nodularity, LSVR Regional changes in hepatic volume, LIMV-FS Liver imaging morphology 
and vein diameter fibrosis score, LVD Liver vein diameter, LIMA-FS Liver imaging morphology and attenuation fibrosis score, LVCA Liver vein to cava attenuation, 
LIMVA-FS Liver imaging morphology, vein diameter, and attenuation fibrosis score, NIC Normalized iodine concentration, PVP Portal venous phase, RLD Right lobe 
diameter, ROI Circular regions of interest

Approach Acronym Description

Morphology‑based score CRL‑R Caudate‑right‑lobe ratio = caudate lobe diameter/right lobe diameter

LIMV‑FS Liver imaging morphology and vein diameter fibrosis score = liver vein diameter/caudate‑right‑lobe ratio

LIMA‑FS Liver imaging morphology and attenuation fibrosis score = caudate‑right‑lobe ratio × liver vein to cava 
attenuation

LIMVA‑FS Liver imaging morphology, vein diameter and attenuation fibrosis score = liver vein diameter/caudate‑
right‑lobe ratio × liver vein to cava attenuation

Contrast‑enhanced biomarkers NIC Normalized iodine concentration = iodine concentration liver/ iodine concentration aorta
The ICratio was defined as  ICAP/  ICPVP, where  ICAP and  ICPVP denoted iodine concentrations during AP 
and PVP, respectively

ECV Hepatic extracellular volume—Hounsfield units (%) = △Hounsfield units liver × (100–1‑hematocrit 
(%))/△Hounsfield units aorta
△HUlive indicates the difference in HUs between the precontrast and equilibrium phase

Postprocessing methods LSN A semiautomated postprocessing software

LSVR A dedicated computed tomography software tool

TA A commercially available texture analysis research software platform

DLS The steps for deep learning system:
Input CT images → Liver segmentation algorithm → Segmented liver images → Liver fibrosis staging 
algorithm → Output

Radiomics The steps for radiomics:
Importing CT images → ROI segmentation
→ Featre extraction → Feature selection →
Clinical application and analysis
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phase and the iodine concentration ratio obtained from 
spectral CT can provide a high level of specificity and 
sensitivity for distinguishing healthy liver from cirrhotic 
liver, particularly class C cirrhotic liver. Sofue et  al. [65] 
observed a correlation between NIC in the 3-min delayed 
DECT scans and severity of liver fibrosis (Spearman 
r = 0.65, p < 0.001). However, Marri et  al. [66] reported a 
strong correlation between NIC concentrations in 5-min 
delayed DECT liver scans and histological forms of liver 
fibrosis. Based on the rationale that fibrotic areas exhibit 
a gradual contrast material accumulation, CT acquisition 
with a delay exceeding 3  min was expected to yield 
higher iodine concentrations in fibrotic livers. Despite 
the lack of consensus on the optimal minute for delayed 
NIC acquisition, NIC using DECT imaging provides a 
noninvasive method for staging liver fibrosis. The clinical 
application of DECT iodine measurements for liver fibrosis 
could be valuable in monitoring disease progression and 
treatment response, potentially reducing the necessity for 
liver biopsy.

ECV, which reflects the degree of hepatic fibrosis by 
measuring the enlarged extracellular space due to collagen 
fiber deposition, can be assessed during the equilibrium 
phase of contrast-enhanced CT [82]. The ECV of the liver 
tissue can be determined using contrast-enhanced CT dur-
ing the equilibrium phase, when the contrast media has 
diffused from the intravascular to extravascular spaces 
to reach an equilibrium. At this contrast-enhanced CT’s 
equilibrium phase, the contrast media is considered to be 
at equal concentration intravascularly and extravascularly. 
Consequently, the ECV fraction can be estimated with the 
following formula: (enhancement in the liver)/(enhance-
ment in the aorta) × (1-hematocrit).

Several studies have validated ECV may act as a reliable 
biomarker of liver fibrosis [67–70, 83, 84]. Yoon et al. [70] 
even suggested that ECV is a more suitable parameter 
for assessing  liver fibrosis than iodine density and effec-
tive atomic number maps, which are calculated solely 
based on iodine/water concentration without consider-
ing hematocrit levels. They also demonstrated that liver 
ECV estimated on the basis of HU values showed signifi-
cant differences between fibrosis stages, but its diagnos-
tic accuracy was lower compared with ECV calculated 
via iodine density. Despite these promising findings, 3 to 
10 min or later delayed phase was used to achieve a con-
sistent steady-state equilibrium condition for ECV meas-
urement in the literature. Further studies are needed to 
determine the optimal delay time for ECV calculated in 
the equilibrium phase.

In summary, the use of NIC and ECV with DECT 
imaging provides valuable insights into hepatic fibrosis 
evaluation, offering noninvasive alternatives for staging 
liver fibrosis.

Postprocessing methods for assessing liver fibrosis
Postprocessing methods for assessing hepatic fibrosis based 
on CT include liver surface nodularity, liver segmental vol-
ume ratio, CT texture analysis (TA), deep learning system 
(DLS), and radiomics. A quantitative tool developed using 
a dedicated semiautomated CT software for calculating 
objective scores of liver surface nodularity was validated for 
staging hepatic fibrosis [71, 72, 85]. The process of deter-
mining the volume of the liver has been made easier by 
advanced visualization software tools that effectively seg-
ment the liver. Several studies showed that liver segmen-
tal volume ratio and total splenic volume, which measure 
CT-based hepatosplenic volumetric changes, can be used 
for non-invasive staging of liver fibrosis [73, 74]. TA deter-
mines the level of heterogeneity in a particular region of 
interest by analyzing the distribution of pixel and voxel-
gray levels in an image based on histogram analysis [86]. 
Several studies have investigated the application of TA for 
the assessment of hepatic fibrosis on CT and found that TA 
parameters are feasible and useful biomarkers for assess-
ing hepatic fibrosis [75, 87]. However, further research is 
needed to study and standardize TA methodology as TA 
metrics and software platforms differ widely.

Recently, deep learning methods, specifically neural 
network with convolutions, have attracted interest as a 
tool for recognizing and interpreting images. The use of 
deep learning methods to stage liver fibrosis has been 
demonstrated in a few studies [24, 76, 77]. DLS provides 
a promising method for assessing liver fibrosis using CT 
scans and liver CT scans, which are widely available. 
Compared with DLS, radiomics analysis requires less data, 
and computational power is needed for training, as features 
are extracted from CT scans using manually designed 
algorithms instead of the raw image. A typical process 
of hepatic fibrosis evaluation using radiomics is shown 
in Fig.  4. Additionally, by analyzing radiomic features, 
radiomics analysis can identify and extract key symptoms 
that are most relevant to the model from the images, making 
CT-based radiomics a valuable diagnostic tool for staging 
liver fibrosis [78]. Another study revealed that incorporating 
splenic radiomic features and hepatic radiomic features 
based on CT can improve radiomics analysis for staging 
liver fibrosis [79].

Although the multiple CT-based biomarkers have been 
demonstrated as reliable in evaluating liver fibrosis in 
various mixed and disease-specific cohorts of patients, 
these techniques are prone to many confounders, such 
as patient-related factors, operator expertise, technical 
variations, sampling errors, presence of other liver 
pathologies, variability in fibrosis distribution and so on. 
Ideally, hepatic fibrosis should be assessed using a multi-
parametric approach that combines the most promising 



Page 12 of 15Hu et al. European Radiology Experimental            (2023) 7:72 

CT features, especially retrospective data acquisition, low 
cost, and optimal use of resources.

Conclusions
In summary, MAFLD affects millions of people 
worldwide, posing a significant burden on economies 
and healthcare systems. It has become routine clinical 
practice to assess hepatic steatosis and fibrosis in patients 
with MAFLD non-invasively. Various CT parameters 
can be used to identify and stratify the stage of hepatic 
steatosis and fibrosis with high accuracy. In addition, 
these methods are attractive due to not only their 
relationship with hepatic steatosis and fibrosis but also 
the ease of accessibility and ubiquity of CT technology 
in clinical settings. With continued improvements in 
new scanning technique and post-processing method, 
CT parameters are expected to become more accurate, 
precise, reproducible, affordable, and routinely applied to 
non-invasive assessment of hepatic steatosis and fibrosis 
in MAFLD.
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