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Abstract 

Background  Chest x-ray is commonly used for pulmonary abnormality screening. However, since the image charac-
teristics of x-rays highly depend on the machine specifications, an artificial intelligence (AI) model developed for spe-
cific equipment usually fails when clinically applied to various machines. To overcome this problem, we propose 
an image manipulation pipeline.

Methods  A total of 15,010 chest x-rays from systems with different generators/detectors were retrospectively col-
lected from five institutions from May 2020 to February 2021. We developed an AI model to classify pulmonary abnor-
malities using x-rays from a single system. Then, we externally tested its performance on chest x-rays from various 
machine specifications. We compared the area under the receiver operating characteristics curve (AUC) of AI models 
developed using conventional image processing pipelines (histogram equalization [HE], contrast-limited histogram 
equalization [CLAHE], and unsharp masking [UM] with common data augmentations) with that of the proposed 
manipulation pipeline (XM-pipeline).

Results  The XM-pipeline model showed the highest performance for all the datasets of different machine specifica-
tions, such as chest x-rays acquired from a computed radiography system (n = 356, AUC 0.944 for XM-pipeline versus 
0.917 for HE, 0.705 for CLAHE, 0.544 for UM, p ≤ 0.001, for all) and from a mobile x-ray generator (n = 204, AUC 0.949 
for XM-pipeline versus 0.933 for HE, p = 0.042, 0.932 for CLAHE (p = 0.009), 0.925 for UM (p = 0.001).

Conclusions  Applying the XM-pipeline to AI training increased the diagnostic performance of the AI model 
on the chest x-rays of different machine configurations.

Relevance statement  The proposed training pipeline would successfully promote a wide application of the AI 
model for abnormality screening when chest x-rays are acquired using various x-ray machines.

Key points   
• AI models developed using x-rays of a specific machine suffer from generalization.

• We proposed a new image processing pipeline to address the generalization problem.
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• AI models were tested using multicenter external x-ray datasets of various machines.

• AI with our pipeline achieved the highest diagnostic performance than conventional methods.

Keywords  Artificial intelligence, Chest radiography, Computer-aided classification, Deep learning, Image 
postprocessing (computer-assisted)

Graphical Abstract

Background
Chest x-ray is the most common medical imaging exam 
to screen patients suspected of having pulmonary abnor-
malities and diseases. Due to its utility, many deep learn-
ing-based artificial intelligence (AI) methods have been 
proposed, such as detecting pneumonia, tuberculosis, 
and COVID-19 [1–5]. Also, some studies have explored 
the potential applications of those methods in clinical 
environments, including shortening turnaround time, 
increasing reading efficiency, and reducing misinterpre-
tation [6–10].

Chest x-ray images have their unique characteristics 
depending on the specifications of x-ray machines which 
are broadly composed of detectors (e.g., computed radi-
ography (CR) and digital radiography (DR)) and genera-
tors (e.g., mobile or stationary). For example, chest x-ray 
images from DR detectors typically show better image 
quality than those from CR detectors at the same dose 
level [11]. In addition, chest x-ray images from mobile 

x-ray machines usually have higher noise than those from 
stationary machines due to the limited maximum power 
of generators [12, 13].

However, many AI methods for chest x-ray abnor-
mality or disease classification have not strictly inves-
tigated their method’s stability for chest x-rays of 
different x-ray machine specifications, even though 
supervised-trained AI algorithms presumably have 
a high bias toward the training dataset [14]. This bias 
results in the degraded diagnostic performance of the 
methods when applied to chest x-rays with different 
characteristics from training data (i.e., x-rays of unseen 
machines during training), limiting the clinical utility in 
the real world [15–17].

In this study, we propose an x-ray manipulation 
pipeline (XM-pipeline) that combines a set of image 
pre-processing and data augmentation techniques to 
overcome the AI model’s bias toward the training data-
set from a single x-ray machine. We carefully designed 
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the XM-pipeline to incorporate the hardware-related 
changes in x-ray images during AI training. To vali-
date the effectiveness of the XM-pipeline, we trained 
AI models using the XM- and conventional pipelines. 
Then, we compared their diagnostic performance 
based on multiple test datasets of different machine 
specifications.

Methods
Chest x‑ray image collection and annotation
In our retrospective study, we collected chest x-ray 
images (digital imaging and communications in medicine 
[DICOM] format) from Vietnam and Indonesian hospi-
tals (Fig. 1). A total of 11,652 chest x-ray images of symp-
tomatic patients who visited the National Lung Hospital 
in Vietnam for tertiary care were acquired between May 
2020 and February 2021. Also, from Awal Bros hospitals 
located in four different areas of Indonesia, 3,358 chest 
x-ray images of asymptomatic individuals who under-
went medical checkups were collected between Septem-
ber 2020 and October 2020. Each hospital used different 
x-ray machine specifications (i.e., CR or DR detectors of 
different vendors with stationary or mobile generators; 
see Table 1 and Supplementary Table S1 for details). The 

institutional review board of each participating institu-
tion approved this study.

A radiologist with 30  years of experience (MD1) 
reviewed all the chest x-rays from Vietnam and Indo-
nesian hospitals. The presence of common pulmonary 
abnormalities (i.e., target abnormalities: atelectasis, con-
solidation/ground glass opacity, fibrotic sequelae, nod-
ule/mass, and pneumothorax) for each chest x-ray image 
was confirmed by the radiologist using a web-based 
annotation tool (Label Studio version 1.6) [18]. Based on 
the radiologist’s annotations, we excluded 3,834 chest 
x-ray images with non-target abnormalities (Fig.  1; see 
Supplementary Table S2 for distribution of target abnor-
malities). Then, the chest x-ray images from the Vietnam 
hospital were randomly split into training (5,763 chest 
x-rays), validation (1,439 chest x-rays), and internal test-
ing datasets (1,278 chest x-rays; VHDR1 in Table 1). Also, 
the chest x-ray images from Indonesian hospitals were 
separated into four datasets according to each x-ray 
machine and hospital as external testing datasets (IHDR2, 
IHCR1, IHCR2, and IHCR3,Mobile in Table  1). To check the 
potential reproducibility issue of the annotations, we also 
invited three more radiologists (12 years of experience on 
average; MD2, MD3, and MD4) to annotate some chest 

Fig. 1  Data flow diagram of our retrospective study



Page 4 of 13Shin et al. European Radiology Experimental            (2023) 7:68 

Ta
bl

e 
1 

Su
m

m
ar

y 
of

 th
e 

te
st

 d
at

as
et

s 
us

ed
 in

 o
ur

 re
tr

os
pe

ct
iv

e 
st

ud
y

D
et

ec
to

r
G

en
er

at
or

Te
st

 d
at

as
et

In
st

itu
tio

n
Co

un
tr

y
Ra

di
ol

og
is

t f
or

 
an

no
ta

tio
n

N
um

be
r o

f 
pa

tie
nt

s
N

um
be

r o
f 

ab
no

rm
al

 x
-r

ay
s

N
um

be
r o

f 
no

rm
al

 x
-r

ay
s

Se
x 

(m
al

e/
fe

m
al

e/
un

kn
ow

n)

A
ge

 (m
ea

n 
±

 s
ta

nd
ar

d 
de

vi
at

io
n)

D
R

St
at

io
na

ry
VH

D
R1

N
at

io
na

l L
un

g 
H

os
pi

ta
l

Vi
et

na
m

M
D

1
1,

27
8

1,
01

3
26

5
1,

02
7/

25
1/

0
34

.6
6 
±

 2
8.

80

IH
D

R2
A

w
al

 B
ro

s 
H

os
pi

ta
l 1

In
do

ne
si

a
M

D
1

1,
90

9
33

0
1,

57
9

81
3/

61
0/

48
6

37
.2

1 
±

 2
4.

09

SZ
D

R3
Sh

en
zh

en
 H

os
pi

ta
l

C
hi

na
M

D
2

66
2

33
6

32
6

46
0/

20
2/

0
35

.5
7 
±

 1
4.

71

C
R

IH
C

R1
A

w
al

 B
ro

s 
H

os
pi

ta
l 2

In
do

ne
si

a
M

D
1

22
7

58
16

9
84

/7
1/

72
42

.6
8 
±

 1
4.

74

IH
C

R2
A

w
al

 B
ro

s 
H

os
pi

ta
l 3

In
do

ne
si

a
M

D
1

35
6

82
27

4
15

6/
20

0/
0

40
.8

6 
±

 1
6.

45

M
G

C
R4

M
on

tg
om

er
y 

H
os

pi
ta

l
U

SA
M

D
3

13
8

58
80

63
/7

4/
1

40
.1

1 
±

 1
8.

79

M
ob

ile
IH

C
R3

,M
ob

ile
A

w
al

 B
ro

s 
H

os
pi

ta
l 4

In
do

ne
si

a
M

D
1

20
4

85
11

9
12

9/
74

/1
44

.3
9 
±

 1
3.

14



Page 5 of 13Shin et al. European Radiology Experimental            (2023) 7:68 	

x-rays of VHDR1 (100 normal and 100 abnormal x-rays) 
and calculated Cohen’s kappa scores between MD1 and 
the others. This results in high Cohen’s kappa scores (0.84 
for MD2, 0.87 for MD3, and 0.81 for MD3), which means 
the annotations of MD1 are highly consistent and repro-
ducible by the other radiologists.

In addition to the collected datasets, we utilized five 
publicly available chest x-ray datasets for AI evaluation: 
Two datasets for tuberculosis detection were Shenzhen 
[19] and Montgomery datasets (SZDR3 and MGCR4 in 
Table 1; Portable Network Graphics format) [19]. Three 
large public datasets included CheXpert [20], ChestX-
Det10 [21], and RSNA-Pneumonia [22] (Portable Net-
work Graphics or Joint Photographic Experts Group 
format; see Supplementary Note 1).

Figure  2 shows some example chest x-ray images 
from the test datasets without adjusting the window 
level and width (i.e., raw DICOM images), highlighting 
diverse image characteristics.

Training AI models
We utilized an EfficientNet-B6 [23] as a neural net-
work architecture and trained five AI models by apply-
ing conventional image processing pipelines, the 
XM-pipeline, and no pipeline (i.e., baseline) (Fig.  3) 

to classify chest x-ray images as normal (i.e., no tar-
get abnormalities) or abnormal (i.e., with at least one 
target abnormality). Each pipeline is composed of two 
sub-functions, pre-processing, and data augmentation. 
We cropped the lung regions of all chest x-ray images 
before applying the pipelines using an additional net-
work developed by in-house data.

We used Pytorch (Version 1.12.1) and an NVIDIA 
GeForce RTX 3090 for AI training. We utilized an 
Adam (learning rate 0.003; batch size 4) [24] as an 
optimizer. In the AI training phase, we applied a resa-
mpling method, which under-sampled the majority 
class data, to mitigate the data imbalance problem [25]. 
All chest x-ray images were resized to 512 × 512 after 
pre-processing.

Conventional image‑processing pipelines
For conventional image pre-processing, we adopted his-
togram equalization (HE) [26], contrast-limited adap-
tive histogram equalization (CLAHE) [27], and unsharp 
masking (UM) [28], which are primarily utilized in chest 
x-ray AI development [29–32]. Also, as conventional data 
augmentation techniques, we applied random rotation 
(degree within [-15, 15]) and horizontal flipping (prob-
ability 0.5), which are commonly used in many studies of 
chest x-ray AI [33–37].

Fig. 2  Example chest x-ray images of different x-ray machine specifications: (a) VHDR1, (b) IHDR2, (c) IHCR1, (d) IHCR2, (e) IHCR3,Mobile, (f) SZDR3, and (g) 
MGCR4. Each image reveals unique characteristics (e.g., contrast and noise levels). The images were plotted without adjusting the window level 
and width except for SZDR3 and MGCR4. In other words, raw image data were extracted from DICOM files
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X‑ray manipulation pipeline (XM‑pipeline)
In the proposed XM-pipeline, as a pre-processing step, 
we modified the histogram of each chest x-ray image to 
normalize its brightness and maximize the information 
inside the lung region (Supplementary Note 2 for detail). 
First, we stretched the histogram through an iterative 
optimization process [38], and to improve the contrast 
inside the lung region, we changed the minimum inten-
sity of each x-ray image to the minimum intensity inside 
the lung region [32]. Example chest x-ray images after 
pre-processing are shown in Fig.  4 (more examples in 
Supplementary Fig. S1).

The histogram modification was then followed by con-
trast, sharpness, and noise augmentation techniques 
(Supplementary Note 3 for detail) in the training phase 
to mimic the hardware-related changes of chest x-rays. 
We simulated the contrast change of chest x-ray images 
depending on the voltage level of an x-ray generator 
using a gamma correction method [39]. Also, we mim-
icked the change in the sharpness of x-rays, possibly due 
to a scattering effect, by applying a Gaussian filter [40]. 

Finally, to consider the thermal and electronic noises, we 
added synthetic noise to each chest x-ray image [41].

Evaluation of AI models
For all the test datasets, the diagnostic performance of 
each AI model was evaluated by calculating the average 
area under the curve (AUC) at receiver operating charac-
teristics analysis with 95% confidence intervals (CIs).

The DeLong test [42] was performed to check the sta-
tistical significance of the difference in the diagnostic 
performance of each pair of the AI model with the XM-
pipeline and another. We repeated AI training ten times 
by iterating the random division of training and valida-
tion data (5,763 chest x-rays (80%) for training; 1,439 
chest x-rays (20%) for validation; 1,278 chest x-rays for 
internal testing were totally separated; Fig. 1). Each ran-
dom split of data for each iteration was consistent across 
the different model settings in Fig. 3. We utilized Fisher’s 
method to combine p values from each iteration and 
check the statistical significance (p < 0.05) for each pair 
(i.e., XM versus another), instead of performing multiple 

Fig. 3  Overview of training and testing phases of the AI models used in this study. a Training phase: after cropping the lung regions of chest x-ray 
images, those images were processed by each pipeline for AI training. The conventional pipelines utilized HE, CLAHE, and UM as pre-processing 
methods, and random rotation and horizontal flipping as data augmentations. The XM-pipeline includes the histogram modification and three 
more data augmentation techniques (i.e., contrast, sharpness, and noise augmentations). All networks were trained to classify chest x-rays as normal 
or abnormal. b Testing phase: external test datasets of different x-ray machine specifications were used for AI evaluation. All input x-rays were 
pre-processed before being fed to the networks. CLAHE Contrast-limited histogram equalization, HE Histogram equalization, UM Unsharp masking
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comparisons (i.e., comparisons between all combinations 
such as HE versus CLAHE).

We also checked the stability of each AI model for the 
changes in the characteristics of x-ray images (e.g., noise 
injection). We utilized the internal testing dataset (VHDR1 
in Table  1) to generate x-ray images with different con-
trast ( γ = 0.2 to 5.0), sharpness ( s = -12 to 12), and noise 
( σ = 0 to 0.1) levels (details in Supplementary Note 3). 
Then, we fed those images to each AI model and calcu-
lated the averaged AUC values depending on the changes 
in contrast, sharpness, and noise levels. For the AUC cal-
culation, we also repeated AI training ten times.

All statistical analysis was performed using Python 
packages (scikit-learn (1.2.0) and SciPy (1.7.3)).

Results
Diagnostic performance of AI models
The diagnostic performance of the AI models (AUCs 
and p values) is summarized in Table 2. Other evaluation 
metrics, such as sensitivity and specificity for each AI 
model, are summarized in Supplementary Table S3. For 
VHDR1, which is the internal test dataset from the same 
source of the training data, the diagnostic performance of 
the AI model with the XM-pipeline showed marginal but 

Fig. 4  Example chest x-ray images from VHDR1, IHCR2, and IHCR3,Mobile after applying the conventional pre-processing methods (HE, CLAHE, UM) 
and the histogram modification in the XM-pipeline: The right upper zones (yellow-dotted boxes) of each image were zoomed in for investigation. 
CLAHE Contrast-limited histogram equalization, HE Histogram equalization, UM Unsharp masking

Table 2  Diagnostic performance of the AI models with different pipelines

AUC​ Area under ROC curve, CI Confidence interval, CLAHE Contrast-limited histogram equalization, HE Histogram equalization, UM Unsharp masking

Test dataset XM-pipeline Baseline HE CLAHE UM

AUC (95% CI) AUC (95% CI) (p) AUC (95% CI) (p) AUC (95% CI) (p) AUC (95% CI) (p)

VHDR1 0.970 (0.967–0.972) 0.966 (0.961–0.971) (< 0.001) 0.962 (0.958–0.965) (< 0.001) 0.965 (0.963–0.968) (0.097) 0.965 (0.963–0.966) (0.002)

IHDR2 0.948 (0.944–0.951) 0.898 (0.887–0.909) (< 0.001) 0.934 (0.929–0.939) (< 0.001) 0.931 (0.927–0.935) (< 0.001) 0.914 (0.902–0.926) (< 0.001)

SZDR3 0.956 (0.951–0.960) 0.908 (0.895–0.921) (< 0.001) 0.949 (0.944–0.954) (0.005) 0.933 (0.923–0.943) (< 0.001) 0.917 (0.901–0.932) (< 0.001)

IHCR1 0.945 (0.940–0.950) 0.899 (0.889–0.909) (< 0.001) 0.933 (0.925–0.941) (0.063) 0.920 (0.909–0.931) (< 0.001) 0.906 (0.887–0.924) (< 0.001)

IHCR2 0.944 (0.939–0.948) 0.658 (0.622–0.692) (< 0.001) 0.917 (0.908–0.926) (0.001) 0.705 (0.662–0.749) (< 0.001) 0.544 (0.520–0.567) (< 0.001)

MGCR4 0.977 (0.974–0.981) 0.918 (0.899–0.936) (< 0.001) 0.966 (0.957–0.974) (0.372) 0.958 (0.952–0.963) (0.038) 0.946 (0.922–0.970) (0.003)

IHCR3,Mobile 0.949 (0.940–0.957) 0.937 (0.927–0.947) (0.043) 0.933 (0.922–0.944) (0.042) 0.932 (0.923–0.942) (0.009) 0.925 (0.912–0.938) (0.001)
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statistically significant differences from the others: AUC 
0.970 (95% CI 0.967–0.972) for XM-pipeline versus 0.966 
(95% CI 0.961–0.971) for baseline (p < 0.001), 0.962 (95% 
CI 0.958–0.965) for HE (p < 0.001), 0.965 (95% CI 0.963–
0.968 for CLAHE (p = 0.097), and 0.965 (95% CI 0.963–
0.966) for UM (p = 0.002)). For the external test datasets, 
the performance of the AI model that utilized the XM-
pipeline consistently outperformed those of the others.

When investigating the results in more detail, the AI 
model with the XM-pipeline achieved better perfor-
mance in all datasets acquired from CR systems (i.e., 
IHCR1, IHCR2, IHCR3,Mobile, and MGCR4) compared to 
those of the other methods: e.g., AUC in IHCR2 0.944 
(95% CI 0.939–0.948) for XM-pipeline versus 0.658 
(95% CI 0.622–0.692) for baseline (p < 0.001), 0.917 
(95% CI 0.908–0.926) for HE (p = 0.001), 0.705 (95% CI 
0.662–0.749) for CLAHE (p < 0.001), and 0.544 (95% CI 
0.520–0.567) for UM (p < 0.001), even if the model was 
trained using the data from a single DR system (i.e., same 
data with VHDR1). In particular, in the IHCR3,Mobile data-
set acquired from a mobile x-ray machine, the AI model 
with the XM-pipeline outperformed the other models, 
reporting statistically significant differences: AUC 0.949 
(95% CI 0.940–0.957) for XM-pipeline versus 0.937 (95% 
CI 0.927–0.947) for baseline (p = 0.043), 0.933 (95% CI 
0.922–0.944) for HE (p = 0.042), 0.932 (95% CI 0.923–
0.942) for CLAHE (p = 0.009), and 0.925 (95% CI 0.912–
0.938) for UM (p = 0.001).

When we tested the AI models on the three large public 
datasets (CheXpert, ChestX-Det10, and RSNA-Pneumo-
nia datasets), the AI model with the XM-pipeline outper-
formed the others. In the CheXpert dataset, the AI model 
with the XM-pipeline showed the best diagnostic perfor-
mance: AUC 0.832 (95% CI 0.824–0.839) for XM-pipeline 
versus 0.822 (95% CI 0.809–0.835) for baseline (p < 0.001), 
0.819 (95% CI 0.804–0.834) for HE (p < 0.001), 0.817 (95% 
CI 0.806–0.828) for CLAHE (p < 0.001), and 0.814 (95% 
CI 0.803–0.826) for UM (p = 0.001). In the ChestX-Det10 
dataset, the AI model with the XM-pipeline reported the 
highest AUC: 0.920 (95% CI 0.916–0.924) for XM-pipeline 
versus 0.898 (95% CI 0.891–0.906) for baseline (p < 0.001), 
0.913 (95% CI 0.907–0.920) for HE (p = 0.003), 0.909 (95% 
CI 0.903–0.915) for CLAHE (p = 0.001), and 0.899 (95% CI 
0.891–0.907 (p = 0.001) for UM). In the RSNA-Pneumonia 
dataset, the AI model with the XM-pipeline also showed 
the best result: AUC 0.861 (95% CI 0.854–0.867) for XM-
pipeline versus 0.854 (95% CI 0.842–0.866) for baseline 
(p < 0.001), 0.853 (95% CI 0.844–0.861) for HE (p = 0.001), 
0.850 (95% CI 0.842–0.857) for CLAHE (p = 0.001), and 
0.853 (95% CI 0.844–0.861) for UM, (p = 0.046).

To further understand the behavior of the AI model, 
we generated heatmaps [43] for the x-rays of selected 
patients in the IHCR2 and IHCR3,Mobile datasets (Fig. 5). In 

the heatmaps, the AI model with the XM-pipeline clearly 
highlighted abnormal regions compared to the other 
models.

Stability of AI predictions
Figure  6 shows the diagnostic performance of each AI 
model depending on the changes in the image character-
istics of input chest x-rays. When we changed the con-
trast of chest x-ray images (Fig.  6a), in general, the AI 
model trained using the XM-pipeline reported higher 
diagnostic performance compared to those of the other 
methods (e.g., AUCs when γ = 5.0 : 0.821 (95% CI 0.814–
0.829) for XM-pipeline, 0.636 (95% CI 0.610–0.667) for 
HE, 0.662 (95% CI 0.612–0.720) for CLAHE, and 0.565 
(95% CI 0.534–0.599) for UM). When the contrast was 
low, UM especially showed degraded performance (e.g., 
AUCs γ = 0.2 : 0.946 (95% CI 0.943–0.950) for XM-
pipeline, 0.943 (95% CI 0.934–0.953) for HE, 0.927 (95% 
CI 0.909–0.947) for CLAHE, and 0.691 (95% CI 0.580–
0.818) for UM). Similarly, when we changed the sharp-
ness (Fig.  6b) and noise levels (Fig.  6c) of chest x-ray 
images, the AI model with the XM-pipeline demon-
strated less degradation of the diagnostic performance, 
such as in cases of increasing sharpness (e.g., AUCs when 
s = 12 : 0.960 (95% CI 0.951–0.971) for XM-pipeline, 
0.729 (95% CI 0.572–0.908) for HE, 0.870 (95% CI 0.837–
0.907) for CLAHE, and 0.553 (95% CI 0.526–0.584) for 
UM) and adding noise (e.g., AUCs when σ = 0.1 : 0.801 
(95% CI 0.771–0.835) for XM-pipeline, 0.555 (95% CI 
0.510–0.606) for HE, 0.630 (95% CI 0.557–0.713) for 
CLAHE, and 0.500 (95% CI 0.481–0.521) for UM).

Discussion
In this study, we proposed the XM-pipeline, which com-
bines the series of image preprocessing and data aug-
mentation methods to minimize the degradation of the 
diagnostic performance of an AI model for chest x-ray 
images of various machine specifications. We confirmed 
that the AI model with the XM-pipeline showed higher 
diagnostic performance than the other AI models with 
the conventional pipelines based on the test datasets of 
different x-ray machines, including CR or DR detectors 
and mobile or stationary generators.

In the XM-pipeline, we carefully designed the data 
augmentation techniques (see Supplementary Note 3 
for detail) to consider the potential x-ray image varia-
tions depending on the x-ray scan settings (e.g., changes 
of scan parameters, presence of grids, etc.) [44–46]. For 
example, due to the change in the voltage level of an x-ray 
generator, photons from the generator will have differ-
ent amounts of energy. Accordingly, the contrast of chest 
x-ray images will be changed [47]. The sharpness in chest 
x-ray images can be changed depending on the presence 
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Fig. 5  Analysis results of each AI model for the x-rays of selected patients. a–d and i–l Chest x-ray images after pre-processing. e–h 
and m–p Heatmaps and abnormality scores. In the abnormal chest x-ray image of a 31-year-old man (first row), the heatmap of the AI model 
with the XM-pipeline highlighted the exact region of fibrosis confirmed by a radiologist (yellow-dotted box in e) with the high abnormality 
score (= 0.964). In contrast, the others showed much smaller activations on these regions in the heatmaps (e versus f, g, h). Also, in the normal 
chest x-ray image of a 30-year-old man (second row), only the heatmap of the AI model with the XM-pipeline revealed no significant activations 
over the image (m versus n, o, p) with the minor abnormality score (= 0.057). CLAHE Contrast-limited histogram equalization, HE Histogram 
equalization, UM Unsharp masking

(See figure on next page.)
Fig. 6  Diagnostic performance of each AI model depending on the changes in x-ray image characteristics. In general, the AI model 
with the XM-pipeline showed consistently higher diagnostic performance compared to those of the other models, such as after increasing 
the contrast (e.g., AUCs when γ = 5.0: 0.821 (95% CI 0.814–0.829) for XM–pipeline, 0.636 (95% CI 0.610–0.667) for HE, 0.662 (95% CI 0.612–0.720) 
for CLAHE, and 0.565 (95% CI 0.534–0.599) for UM)) and increasing the sharpness (AUCs when s = 12: 0.960 (95% CI 0.951–0.971) for XM-pipeline, 
0.729 (95% CI 0.572–0.908) for HE, 0.870 (95% CI 0.837–0.907) for CLAHE, and 0.553 (95% CI 0.526–0.584) for UM). AUC​ Area under ROC curve, CLAHE 
Contrast-limited histogram equalization, HE Histogram equalization, UM Unsharp masking
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Fig. 6  (See legend on previous page.)
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of grids [48] and vendor-specific image processing tech-
niques when producing DICOM [49]. Also, a chest x-ray 
image is known to have a mixture of noises due to sev-
eral factors (e.g., amount of radiation dose) [13], and we 
approximated the thermal and electronic noises by add-
ing Gaussian noise to chest x-rays [50].

Previously, some studies have reported the diagnostic 
performance of AI models for chest x-ray images from 
multiple institutions [51, 52] and a few x-ray machines 
[53]. However, none of them proposed a training pipeline 
to improve the diagnostic performance and investigated 
AI models regarding different machine specifications, 
including the type of detectors and generators. Further-
more, we trained and evaluated the AI models using raw 
image data from DICOM files without adjusting the win-
dow level and width, while many open datasets provide 
x-ray data in Portable Network Graphics or Joint Pho-
tographic Experts Group formats [20, 54]. We believe 
deploying an AI model optimized for DICOM files is 
more practical in clinics.

Throughout this study, we have chosen the two most 
common data augmentation techniques (i.e., random 
rotation and horizontal flipping) as the conventional ones. 
To find out the effect of other augmentations, we meas-
ured the diagnostic performance of AI models by applying 
different sets of augmentations, including random shear-
ing (degree within [-15, 15]) and scaling (scaling factor 
within [0.8, 1.2]). However, no combination of augmenta-
tions was superior on the test datasets, even after adding 
more augmentations (see Supplementary Table S4).

When we investigated the diagnostic performance of 
AI for each abnormality, we found that some abnormali-
ties were more challenging than others in terms of gen-
eralization (see Supplementary Table S5). For example, 
in the VHDR1 and IHDR2 datasets, the diagnostic perfor-
mance for consolidation/ground glass opacity, pleural 
effusion, and pneumothorax were almost the same, 
while that for nodule/mass and fibrotic sequelae were 
degraded in IHDR2. However, the diagnostic performance 
was improved for all the abnormalities, after applying the 
XM-pipeline, compared to the baseline model.

This study has limitations. First, we could not fully 
explore the optimal parameters of the XM-pipeline (e.g., 
range of sharpness coefficient). Therefore, the diagnostic 
performance can still be improved. Second, we adopted 
the most common image processing techniques for com-
parison, such as HE, CLAHE, and UM. However, other 
techniques exist to normalize chest x-ray images, such 
as [55]. Third, even if we carefully designed the data aug-
mentation techniques in the XM-pipeline, those tech-
niques are still limited to reflect the changes of image 
characteristics in chest x-rays. In the future, more realis-
tic algorithms, such as the Monte Carlo method for x-ray 

scattering [56], can be explored as advanced data augmen-
tation techniques. Fourth, we have validated the diagnos-
tic performance of the AI models for classifying common 
pulmonary abnormalities, but other applications, such as 
COVID-19 detection [1], might be addressed as future 
work. Fifth, in this study, quality control of chest x-rays 
was only performed on private datasets. Other large 
open datasets, such as CheXpert [20], might need to be 
reviewed by radiologists to prevent potential labeling 
issues [57, 58].

In summary, the diagnostic performance of the AI 
model with the XM-pipeline was consistently higher than 
those of the other models with the conventional pipelines 
when they were evaluated on the test datasets of differ-
ent x-ray machine specifications. This result implies that 
applying the XM-pipeline can minimize the performance 
degradation of the AI model due to the changes in x-ray 
machine specifications.
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XM-pipeline. Supplementary Fig. S3. Example images with different γ 
values. (a) and (b): X-rays with γ value less than one. (c): original chest X-ray 
image. (d) X-rays with γ value greater than ones. Supplementary Fig. S4. 
Example images with different s values. Supplementary Fig. S5. Example 
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