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Abstract 

Background Automated segmentation of spinal magnetic resonance imaging (MRI) plays a vital role both scientifi‑
cally and clinically. However, accurately delineating posterior spine structures is challenging.

Methods This retrospective study, approved by the ethical committee, involved translating T1‑weighted 
and T2‑weighted images into computed tomography (CT) images in a total of 263 pairs of CT/MR series. Landmark‑
based registration was performed to align image pairs. We compared two‑dimensional (2D) paired — Pix2Pix, denois‑
ing diffusion implicit models (DDIM) image mode, DDIM noise mode — and unpaired (SynDiff, contrastive unpaired 
translation) image‑to‑image translation using “peak signal‑to‑noise ratio” as quality measure. A publicly available 
segmentation network segmented the synthesized CT datasets, and Dice similarity coefficients (DSC) were evaluated 
on in‑house test sets and the “MRSpineSeg Challenge” volumes. The 2D findings were extended to three‑dimensional 
(3D) Pix2Pix and DDIM.

Results 2D paired methods and SynDiff exhibited similar translation performance and DCS on paired data. DDIM 
image mode achieved the highest image quality. SynDiff, Pix2Pix, and DDIM image mode demonstrated similar DSC 
(0.77). For craniocaudal axis rotations, at least two landmarks per vertebra were required for registration. The 3D trans‑
lation outperformed the 2D approach, resulting in improved DSC (0.80) and anatomically accurate segmentations 
with higher spatial resolution than that of the original MRI series.

Conclusions Two landmarks per vertebra registration enabled paired image‑to‑image translation from MRI to CT 
and outperformed all unpaired approaches. The 3D techniques provided anatomically correct segmentations, avoid‑
ing underprediction of small structures like the spinous process.

Relevance statement This study addresses the unresolved issue of translating spinal MRI to CT, making CT‑based 
tools usable for MRI data. It generates whole spine segmentation, previously unavailable in MRI, a prerequisite for bio‑
mechanical modeling and feature extraction for clinical applications.

Key points 

• Unpaired image translation lacks in converting spine MRI to CT effectively.

• Paired translation needs registration with two landmarks per vertebra at least.

• Paired image‑to‑image enables segmentation transfer to other domains.
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• 3D translation enables super resolution from MRI to CT.

• 3D translation prevents underprediction of small structures.

Keywords Deep learning, Image processing (computer assisted), Magnetic resonance imaging, Spine, Vertebral body

Graphical Abstract

Background
The different image contrast of computed tomography 
(CT) and magnetic resonance imaging (MRI) offer dis-
tinct clinical utilities. Segmentation is a prerequisite 
to automatically extract biomarkers, especially in large 
cohorts like the German National Cohort [1] or the UK 
Biobank [2]. While the extraction of the precise bone 
structure of the spine from CT is publicly available [3, 4], 
neither a segmentation nor an annotated ground truth 
dataset for the whole spine including the posterior ele-
ments is currently available for MRI.

Accurate segmentations are not only vital for sci-
entific studies but also enable the exact localization 
of abnormalities in clinical routine. Unlike CT, MRI 
provides additional information about bone marrow 
edema-like changes, intervertebral disc degeneration, 
degenerative endplate changes, ligaments, joint effu-
sions, and the spinal cord. Robust and precise seg-
mentation and quantification of such spinal structures 
are a prerequisite, e.g., to evaluate large epidemiologic 

studies or to enable automated reporting. An alterna-
tive to labor-intensive manual annotations is the poten-
tial use of image-to-image translation to extract bony 
structures. This approach may overcome challenges like 
partial volume effects (e.g., at the spinous process) and 
subtle signal differences (e.g., of vertebral end plates 
and ligaments in MRI), which are easily distinguishable 
in high-resolution CT but not in MRI.

Image-to-image translation involves transforming 
images from one domain to another, and several deep 
learning methods have been employed for this pur-
pose, including Pix2Pix [5], CycleGAN [6], and con-
trastive unpaired translation (CUT) [7]. These methods 
have been used in various studies to generate missing 
sequences, translate to different domains, enhance 
image quality, and improve resolution [8]. In the medi-
cal domain, these methods have shown success in rigid 
structures like the brain, head, and pelvis, where regis-
tration guarantees that both domains have similar tis-
sue distributions and anomalies [8]. However, if biases 
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are not accounted for, the model may hallucinate new 
structures to fit both distributions [9]. Due to this dif-
ficulty, translating warpable structures like the spine is 
less explored in the literature. Some successful imple-
mentations have shown that translated images can be 
similar to the target images and might mislead medi-
cal experts [10–14]. However, none of these works has 
focused on using translations for downstream tasks, 
such as segmentations in the output domain.

This study aimed to develop and compare different 
image translation networks for pretrained CT-based seg-
mentation models when applied to MRI datasets (Fig. 1). 
The primary focus was on segmenting the entire spine, 
with special attention to accurately translating the pos-
terior spine structures, as they pose challenges in MRI 
delineation. We compared generative adversarial network 
(GAN)-based approaches [5, 7] with new denoising dif-
fusion models [15–17]. Denoising diffusion functions 
are fundamentally different from GANs, as they add and 
remove noise to an image instead of relying on the dis-
criminator and generator zero-sum game in GANs. In the 
computer vision domain, denoising diffusion models have 
outperformed GANs in various tasks, including upscal-
ing, inpainting, image restoration, and paired image-to-
image translation [18]. While diffusion has been applied 
to medical image translation tasks in a limited number of 
papers [17, 19–22], we adapted the conditional denoising 

diffusion for paired image-to-image two-dimensional 
(2D) and three-dimensional (3D) translation.

The purposes of this study were as follows: (1) to 
improve existing image-to-image translation for spine 
MRI to CT translation by improving all steps of the 
process, from data alignment, implementation of new 
denoising diffusion translations and comparison to 
GANs, and finally extension of our findings to 3D transla-
tion; (2) to utilize the translated CT images for automatic 
segmentation of the entire spine, eliminating the need 
for a manually labeled segmentation mask in the original 
MRI domain; and (3) to develop the ability to generate 
full spine segmentations on MRI, which are currently not 
available.

Methods
In brief, we aligned CT and MR spine images through 
rigid landmark registration [23]. With this paired data, 
we trained various image-to-image models to gener-
ate synthetic CT images. We used an available CT seg-
mentation algorithm [3, 4] to generate vertebral masks 
in these synthesized CTs for the original MRI. These 
resulting segmentations were subsequently used to 
generate new landmarks for new training data (Fig.  1). 
During inference, the MRI is sufficient to generate a 
segmentation by translating the MRI to a synthetic CT 

Fig. 1 Training pipeline. In our datasets, we identified the center of the vertebral body and spinous process (green box; raw data). Based 
on the center points, we rigidly registered CT onto MRI to align the bone structures between the two images (yellow box; training data). Aligned 
images were used to train our image‑to‑image models. Finally, the MRIs of validation and test sets were translated to CT images. Segmentation 
was performed on synthesized CT images and, consequently, was perfectly aligned with the original MRIs (blue box from left to right; prediction). 
The generated segmentations can be used for generating additional and new center points to iteratively optimize the registration
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and subsequently applying an existing CT segmentation 
algorithm. We compared different landmark registra-
tions and 2D models. Finally, we adapted the results into 
3D models and assessed the accuracy of the resulting 
segmentations.

Data
In this study, we retrospectively collected sagittal 
T1-weighted and T2-weighted MRI and correspond-
ing CT images of the spine from the same patient 
within a week. Approval from the local ethics commit-
tee was obtained, and informed consent was waived. 
Figure  2 illustrates our data selection process. Sixty-
two T1-weighted image series (18 males, aged 66 ± 15 
years [mean ± standard deviation]; 44 females, aged 
72 ± 13 years) were used from another unpublished in-
house study, including five thoracic and 57 lumbar vol-
umes. Additionally, a new dataset was collected of 201 
T2-weighted image series (50 males, aged 65 ± 20 years; 
42 females, aged 69 ± 17 years) from 92 patients, includ-
ing 38 cervical, 99 thoracic, and 70 lumbar volumes. 
Patients with fractures and degenerative changes were 
included, while those with motion artifacts, metasta-
ses, and foreign objects were excluded, because for seg-
mentation models, it would benefit when the translation 
suppresses these anomalies. We performed rigid reg-
istration of the matching MRIs and CTs based on the 
center of mass of the vertebral body and the spinous pro-
cess (Fig. 1, bottom left). In-house test set, training, and 
validation set were split patient-wise for different MRI 
acquisitions of other spine regions. For validation, six 
T1-weighted and nine T2-weighted MRIs were used as 
they could not be aligned with the CTs due to substan-
tially different patient positioning.

We used 172 lumbar MRI and segmentation volumes 
from the MRSpineSeg Challenge (MRSSegClg) [24, 
25] for external evaluation of Dice similarity coefficient 
(DSC). This dataset focuses on the lumbar region, but the 
segmentation exceeds the bony borders, questioning its 
validity. One subject was used for pipeline development 
and validation. Validation sets were used to find optimal 
inference parameters and to avoid overfitting. Since the 
labels in MRSSegClg encompass not only the bony spine 
but also adjacent ligaments and soft tissue, we manually 
adjusted the labels for a subset of 20 volumes to restrict 
them solely to the bone. We analyzed these subsets as 
two distinct datasets.

Image preprocessing
CT and MR datasets were rigidly registered [23] by 
using landmarks to facilitate paired image transla-
tion. For the single-landmark approach, we selected 
the center of mass (CM) of the vertebral bodies. To 

address rotational misalignment around the cranio-
caudal axis, the CM of the spinal processes was added 
for the two-landmark approach, as such rotational mis-
alignment was frequently observed. Landmarks for CT 
were automatically determined based on vertebral and 
subregion segmentations (Fig. 1). For the T2-weighted 
images, we manually identified the CM points for both 
the vertebral bodies and the spinous processes. The 
manual centroid selection and ground truth segmen-
tation corrections in the test sets were performed by J. 
S., a radiologist with 3 years of experience. To obtain 
the points for the T1-weighted images, we synthesized 
CTs by adapting the T2 weighted to CT translation, 
generating segmentation from synthetic images, and 
extracting the CMs. Roughly 10 to 20% of the failure 
cases were first excluded and then translated with mod-
els that were trained on the other T1-weighted images. 
This proved sufficient to generate all CM points. To 
assess the impact of additional landmarks on registra-
tion, we computed the DSC using our pipeline on the 
T2-weighted dataset using the manual ground truth as 
a reference.

CT images were transformed to the range of [-1, 1] 
by dividing the values by 1,000 HU and clamping out-
liers to retain air, soft tissue, and bone while suppress-
ing extreme intensities. Linear rescaling was applied 
to the MRI data, converting the range from [0, max] 
to [-1, 1]. To account for varying intensities, MRIs 
were augmented with a random color jitter (bright-
ness, contrast randomization: 0.2). Image pairs were 
resampled to a uniform spatial resolution of 1 × 1 mm 
in the sagittal plane and a slice thickness of 2.5–3.5 
mm, as acquired in the MRI. To enhance the training 
data by a factor of 10 and simulate weak scoliosis and 
unaligned acquisition, we introduced 3D image defor-
mations using the elastic deformation Python plug-in 
[26]. Subsequently, the volumes were sliced into 2D 
sagittal images, and slices without segmentation were 
removed. Random cropping was performed to adjust 
the image size to 256 × 256 pixels.

Models for image‑to‑image translation
To compare various image-to-image translation methods, 
we implemented two unpaired methods, namely CUT [7] 
and SynDiff [17], along with three paired methods, Pix-
2Pix [5], DDIM noise, and DDIM image. The training 
process involved unregistered and registered data using 
both single- and two-landmark approaches. For DDIM, 
we employed a UNet architecture [26] with convolutional 
self-attention and embeddings for the timesteps, which 
we refer to as self-attention U-network (SA-UNet) [18, 
27, 28]. The diffusion mechanism predicted either noise 
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or the image, with the other computed during infer-
ence. A learning rate of 0.00002 was used, and we set 
the timestep to t = 20 for the DDIM inference parameter. 
The value of η = 1 (noise generation is fully random) was 
determined by optimizing on the validation set. We com-
pared our approach to CUT [7], Pix2Pix [5], and SynDiff 
[17]. During our experiments, we performed a hyper-
parameter search for the reference ResNet and UNet. 
Additionally, we introduced a weighted structural simi-
larity index metric (SSIM) loss from a recent paper [29] 
to update the loss formulation. To further explore the 
impact of different models and methods, we also tested 
CUT and Pix2Pix with the SA-UNet. All models were 
randomly initialized. In our analysis of DDIM, we ablated 
three inference parameters [16, 30]. However, the results 
did not show substantial effects, and we have included 
them in the Supplementary material along with brief 
descriptions of the tested methods.

Image quality
The evaluation of image quality involved comparing 
actual and synthesized CT images. To quantify this, we 

used the “peak signal-to-noise ratio” (PSNR) metric. In 
this context, the reference image serves as the signal, 
while the divergence between the two images is consid-
ered the noise. A PSNR value above 30 dB indicates that 
the difference between the two images is imperceptible to 
the human eye [10]. It is important to note that we did 
not control the correspondence of soft tissue, as it fell 
outside the scope of our downstream task. To handle this 
in our evaluation, we masked pixels that were further 
than 10 pixels away from a segmented spine structure, 
setting them to zero. We also computed the absolute dif-
ference (L1) mean squared error (MSE), SSIM, and visual 
information fidelity (VIFp).

Downstream task: segmentation
We utilized a publicly available segmentation algorithm 
[3, 4] on the synthesized CT images. We then compared 
the DSC globally and on a vertebral level between the 
synthesized and ground truth segmentations in four 
datasets. The segmentation ground truth of the in-house 
datasets was derived from the aligned CT image and was 

Fig. 3 Difficulties of the MRI data for unpaired training and issues with the MRSSegClg segmentation. a The bone marrow of the posterior 
elements and the epidural fat were not easily differentiated. Unpaired learning has issues translating the arcus as bone and the epidural fat as soft 
tissue in the CT domain. b In posterior elements, bone and soft tissue boundaries are weakly defined due to partial volume effects in and around 
the spinous process. c The segmentations of the MRSSegClg include soft tissues around the spinous process, caused by difficulties of the original 
annotators as described in B. d The soft tissues around the vertebrae are also segmented in the MRSSegClg. c and d show the reasons why we 
manually improved the segmentation in a small subset
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manually corrected (datasets 1 and 2). The segmenta-
tion of the MRSSegClg that is known to exceed the bony 
structures (dataset 3) and a manually corrected sub-
set of MRSSegClg (dataset 4) [24, 25]. In Fig.  3c and d, 
the segmentation reaching beyond the bony structures 
of MRSSegClg is highlighted. For analysis purposes, we 
excluded structures that the CT segmentation algorithm 
could not segment, such as the sacrum and partially visu-
alized vertebrae.

3D image translation with diffusion
The first implementations of both DDIM and Pix-
2Pix in 3D, similar to the 2D approach, did not con-
verge. We thus implemented changes according to 
recommendations of Bieder et al. [31]. To optimize 
graphics processing unit storage, we eliminated 
attention layers and replaced concatenation skip 
connections with addition operations. Addition-
ally, we introduced a position embedding by con-
catenating ramps ranging from zero to one of the 
original images’ full dimensions into the input. The 
training was done on 3D patches, and our approach 

used a patch size of (128 × 128 × 32), where the left/
right side was limited to 32 pixels due to the image 
shape. This setup is “fully convolutional,” which 
means that during inference, an image of any size 
can be computed by the network as long the sides 
are divisible by 8. To the best of our knowledge, 
this represents the first 3D image-to-image trans-
lation with diffusion. Since 3D translations require 
to include the left/right direction, we resampled all 
images to 1 mm isotropic.

Statistical analysis and software
We employed a paired t-test to assess the signifi-
cance of PSNR and DSC between different models. 
To achieve a fixed size of 256 × 256 pixels for assess-
ing image quality, we used one crop per image slice. 
When reporting differences in multiple experiments, 
we present the worst (i.e., highest) p-value. We skip 
significance calculations other image quality metrics 
because the results are redundant. For 3D data, we 
pad the test data, and the 3D models generate 1-mm 
isotropic volumes, which are later resampled to the 
original MRI size.

Fig. 4 Comparison of one and two registration points per vertebra versus real data. a We registered with a single point in the center of the vertebral 
body. The vertebral body could rotate along the spine axis. This caused the posterior vertebra structures to be misaligned. b When we registered 
the images with an additional point on the spinous process, we avoided this rotation around the spine itself. The blue dashed lines are for locating 
the relation between axial and sagittal slices. c Translation with networks trained on registrations with 0, 1, or 2 points per vertebra. Images are 
from the in‑house T2‑weighted test dataset. Posterior structures are only reconstructed correctly with 2‑point registration. DDIM Denoising diffusion 
implicit model
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Results
Influence of rigid registration
Networks trained on unregistered data were incapable 
of learning the difference between soft tissue and bone. 
During our early testing, we noticed that most methods 
could correctly identify the vertebral body, but translat-
ing the posterior structures was impossible. Especially, 
the spinous process was often omitted in the transla-
tion, as shown in Fig. 4. “One point per vertebra” regis-
tration was sufficient for the vertebral body translation, 
but the spine could rotate around the craniocaudal 
axis. This caused the spinous process to disappear in 
translated images (Fig.  4a, b). Additionally, confusion 
between epidural fat and bone shifted the entire pos-
terior elements towards the spinal cord. Overcoming 
this issue required accounting for rotation by adding 
additional points to the rigid registration (Fig. 4). Next 
to visual findings, we observed a significant increase 
in DSC from 1 to 2 points per vertebra registration: 
Pix2Pix 0.68 to 0.73 (p < 0.003); SynDiff 0.74 to 0.77 
(p < 0.001); DDIM noise 0.55 to 0.72 (p < 0.011); and 

DDIM image 0.70 to 0.75 (p < 0.001). Notably, the best 
unpaired method, SynDiff, could not learn posterior 
structure translation without registration (DSC without 
registration 0.75).

Image quality
The unpaired CUT models performed worse than all 
others (p < 0.001), while all other models performed on a 
similar level (Table 1 for PSNR and other common met-
rics). Example outputs from the test sets can be seen in 
Fig.  5. The Pix2Pix with the SA-UNet performed bet-
ter on T1-weighted images and worse on T2-weighted 
images than the smaller UNet (T1 weighted, p < 0.001; 
T2 weighted, p = 0.041). Even though SynDiff had an 
unpaired formulation, it had similar results compared 
to our paired Pix2Pix and DDIM noise (slightly worse 
in T1 weighted and better in T2 weighted, all p < 0.003). 
The DDIM image mode performed slightly better than 
the DDIM noise mode (p < 0.001), SynDiff (p < 0.001), and 
Pix2Pix (p < 0.001). DDIM image mode produces images 
with less noise than the original data. Less noise should 
make the segmentation easier. Overall, the DDIM image 
mode was our best-performing 2D model.

Downstream task: segmentation
Three 2D models shared the best DSC: Pix2Pix SA-UNet, 
SynDiff, and DDIM image mode (Table  2): Pix2Pix SA-
UNet versus SynDiff, p = 0.019; Pix2Pix SA-UNet versus 
DDIM image mode, p < 0.001; and DDIM image mode 
versus SynDiff, p = 0.455. DDIM in noise mode and Pix-
2Pix UNet (DDIM noise versus Pix2Pix UNet, p = 0.972) 
were worse than the three best models (p < 0.001). The 
CUT reconstruction was unsuited for segmentation and 
was the worst model (CUT versus all p < 0.001). An exam-
ple of the segmentation from different translations for 
a full spine can be found in Fig. 6 in an example dataset 
from the German National Cohort [1].

We observed comparable rankings in the MRSSegClg 
[24, 25] and T1-weighted datasets when excluding the 
vertebral body (Table  3). In the in-house T2-weighted 
test set, SynDiff has a considerably higher DSC than Pix-
2Pix SA-UNet and DDIM image mode (p < 0.001), indi-
cating a better performance in the “more complicated” 
anatomical structures for this data set only.

The correction of the MRSSegClg segmentations 
resulted in an increased DSC of up to 0.02. The rank-
ings of all methods on the original versus the corrected 
MRSSegClg dataset were mostly consistent, indicating 
that no method had exploited the false delineation by 
overpredicting the segmentation.

Overall, Pix2Pix SA-UNet, DDIM image mode, and 
SynDiff were equally capable of producing CT images 

Table 1 Image quality for T1‑weighted and T2‑weighted MRI to 
CT translation

Arrows indicate if smaller or bigger is better. As a visual aid, we marked the 
best values with a. We marked multiple values if they were below the rounding 
threshold. The ground truth is registered real CTs. The image pairs are from the 
test set of our in-house data

CUT  Contrastive unpaired translation, CT Computed tomography, DDIM 
Denoising diffusion implicit model, MRI Magnetic resonance imaging, MSE Mean 
squared error, PSNR Peak signal-to-noise ratio, SA-UNet Self-attention U-network, 
SSIM Structural similarity index metric, VIFp Visual information fidelity

From T1‑weighted MRI L1↓ MSE↓ PSNR↑ SSIM↑ VIFp↑
CUT ResNN (unpaired) 0.0224 0.0050 23.50 0.835 0.295

CUT SA‑UNet (unpaired) 0.0295 0.0083 21.76 0.819 0.269

Pix2Pix UNet 0.0143 0.0023 27.37 0.881 0.392

Pix2Pix SA‑UNet 0.0135 a0.0020 27.82 0.883 0.394

SynDiff (unpaired) 0.0150 0.0024 27.01 0.865 0.373

DDIM noise η = 1, t = 20, w = 0 0.0136 0.0021 27.60 0.879 0.396

DDIM image η = 1, t = 20, 
w = 0

a0.0131 a0.0020 a27.89 a0.887 a0.411

From T2‑weighted MRI L1↓ MSE↓ PSNR↑ SSIM↑ VIFp↑
CUT ResNN (unpaired) 0.0213 0.0046 23.72 0.848 0.312

CUT SA‑UNet (unpaired) 0.0215 0.0046 23.75 0.850 0.311

Pix2Pix UNet 0.0142 0.0023 26.95 0.895 0.392

Pix2Pix SA‑UNet 0.0142 0.0023 26.87 0.890 0.384

SynDiff (unpaired) 0.0140 0.0022 27.12 0.885 0.385

DDIM noise η = 1, t = 20, w = 0 0.0139 0.0023 26.92 0.894 0.391

DDIM image η = 1, t = 20, 
w = 0

a0.0131 a0.0021 a27.36 a0.898 0.401

Pix2Pix 3D 0.0188 0.0039 26.38 0.889 0.428

DDIM 3D noise η = 1, t = 25 0.0194 0.0041 26.22 0.894 a0.444

DDIM 3D image η = 1, t = 25 0.0189 0.0040 26.22 0.892 0.434
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Fig. 5 Translation from test sets T1‑weighted/T2‑weighted MRI to CT from the neck to the lumbar vertebra. We did not control the type 
of reconstruction of the CT. Therefore, the noise level and appearance could differ from the reference and were still considered correct. The 3D 
variances were trained on an improved training set, which was only done for T2 weighted. The reference is a registered real CT. * is an off‑angle 
acquisition with strong partial volume effects. The dataset contains a high number of broken vertebral bodies, which causes them to be 
also translated correctly. CUT  Contrastive unpaired translation, DDIM Denoising diffusion implicit model, SA-UNet Self‑attention U‑network

Table 2 Average Dice similarity coefficient↑ per volume and per vertebra on the T1 weighted, T2‑weighted MRI, and the MRSSegClg

MRSSegClg (ours) is a split where we improved the segmentation better to align the segmentation with the actual bone structure. T1-weighted and T2-weighted 
ground truths are corrected segmentations of the registered CTs. We marked the best values for the 2D cases with a and the overall best with b

CUT  Contrastive unpaired translation, DDIM Denoising diffusion implicit model, MRSSegClg MRSpineSeg Challenge, SA-UNet Self-attention U-network

Per volume Per vertebra Per volume Per vertebra Per volume Per vertebra Per volume Per vertebra
Dataset T1 weighted T1 weighted T2 weighted T2 weighted MRSSegClg MRSSegClg MRSSegClg (our) MRSSegClg (our)

CUT ResNN 
(unpaired)

0.30 0.28 0.49 0.46 0.54 0.49 0.54 0.50

CUT SA‑UNet 
(unpaired)

0.09 0.08 0.26 0.23 0.02 0.01 0.03 0.02

Pix2Pix UNet 0.79 0.80 0.73 0.69 0.75 0.74 0.76 0.76

Pix2Pix SA‑UNet a0.82 0.82 0.75 0.72 a0.77 a0.76 0.77 0.77

SynDiff (unpaired) 0.80 0.81 a0.77 a0.74 a0.77 a0.76 0.77 0.76

DDIM noise
η = 1, t = 20, w = 0

0.78 0.77 0.72 0.69 0.75 0.73 0.77 0.78

DDIM image
η = 1, t = 20, w = 0

a0.82 a0.83 0.75 0.72 a0.77 a0.76 a0.78 0.78

Pix2Pix 3D 0.79 0.78 0.78 b0.78 0.79 b0.80

DDIM 3D noise
η = 1, t = 25

0.79 0.78 0.78 b0.78 b0.80 b0.80

DDIM 3D image
η = 1, t = 25

b0.80 b0.79 b0.79 b0.78 b0.80 b0.80
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for the segmentation algorithm, closely followed by 
DDIM noise mode and the Pix2Pix UNet.

3D image translation with diffusion
All 3D models increased the DSC compared to our 2D 
models (p < 0.006). Pix2Pix 3D and DDIM 3D noise 
performed on a similar level, while DDIM 3D image 

performances were consistently a bit better close to 
the rounding threshold (p < 0.001). PSNR showed a 
drop compared to the 2D variants. The 3D models out-
perform all 2D models on posterior structures (Fig. 7: 
T2 weighted, p < 0.024; MRSSegClg (ours), p < 0.005 
for DDIM 3D image, p < 0.062 for DDIM 3D noise; 
p < 0.462 for Pix2Pix 3D; posterior structures are una-
vailable in the original MRSSegClg). With the rescaling 

Fig. 6 Translation from T2‑weighted MR to CT and the segmentation results in an external full spine scan. The MRI shown is a random image 
from the German National Cohort dataset. The CT translation is stitched. The 2D networks only work on a fixed size of 256 × 256, and the 3D models 
run out of memory for the entire image. The 2D networks needed classifier‑free guidance (w = 1) for these out‑of‑distribution images or else 
the neck regions would not form correctly because the frontal area has a drop in magnetic resonance signal. The 3D networks do not delineate 
the background and soft tissue when we use a small number of steps (t = 25). A We observed underpredictions in the thorax process spinous. B The 
neck has higher variability between different translations. Moving to 3D translation resolves these issues. CUT  Contrastive unpaired translation, DDIM 
Denoising diffusion implicit model, SA-UNet Self‑attention U‑network
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to 1-mm isotropic, we receive a super-resolution of our 
mask in the thick slice direction that resembles a more 
realistic 3D shape than the native resolution (Fig. 7).

Discussion
This study successfully demonstrated the feasibility 
of translating standard sagittal spine MRI into the CT 
domain, enabling subsequent CT-based image pro-
cessing. Specifically, the registration process, with a 

minimum of 2 points per vertebra, enables accurately 
translating posterior structures, which are typically 
challenging for image translation and segmentation. 
To achieve this, a low-data registration technique was 
introduced for pairing CT and MRI images, which can 
be automated by our translation and segmentation pipe-
line. In our low-data domain, paired translation methods 
performed on a similar level, with DDIM in image mode 
being the single best model. The spinous process was not 

Table 3 Average posterior structures Dice similarity coefficient↑ per volume and per vertebra

The vertebral body is removed from the calculation by an automatic subregion segmentation on the T1 weighted, T2 weighted, and MRSSegClg (ours). The 
unchanged MRSSegClg could not be subregion segmented. We marked the best values from 2D cases with a and the overall best with b

CUT  Contrastive unpaired translation, DDIM Denoising diffusion implicit model, MRSSegClg MRSpineSeg Challenge, SA-UNet Self-attention U-network

Per volume Per vertebra Per volume Per vertebra Per volume Per vertebra
Dataset T1 weighted T1 weighted T2 weighted T2 weighted MRSSegClg (our) MRSSegClg (our)

CUT ResNN (unpaired) 0.09 0.09 0.17 0.15 0.16 0.13

CUT SA‑UNet (unpaired) 0.01 0.01 0.07 0.05 0.00 0.00

Pix2Pix UNet 0.64 0.62 0.55 0.50 0.56 0.55

Pix2Pix SA‑UNet a0.68 a0.67 0.59 0.54 a0.58 0.56

SynDiff (unpaired) 0.67 a0.67 a0.63 a0.58 a0.58 a0.57

DDIM noise
η = 1, t = 20, w = 0

0.61 0.59 0.50 0.46 0.57 0.56

DDIM image
η = 1, t = 20, w = 0

a0.68 a0.67 0.58 0.53 a0.58 a0.57

Pix2Pix 3D 0.69 0.67 0.59 0.58

DDIM 3D noise
η = 1, t = 25

b0.70 b0.68 0.60 b0.60

DDIM 3D image
η = 1, t = 25

b0.70 b0.68 b0.61 b0.60

Fig. 7 3D visualization of the generated segmentations out of the German National Cohort and in‑house datasets. The 3D translation 
models produce isometric segmentation (iso) that looks biologically correct. After downscaling to the native resolution (native), we observe 
that the spinous process gets deformed by reducing the slice thickness because the spinous process is thinner than two to three slices. The 
examples are translated by the DDIM image mode model. We observe no noticeable drop in translation quality for MRIs from other scanners. 
Degenerative changes that are not in the training set are often repaired during translation. While it can partially reproduce when vertebral bodies 
grow together, which is present in rare cases in the training set. This can be observed by the over‑segmentation in the right image from vertebra 7 
to 10 counted from the bottom. DDIM Denoising diffusion implicit model, ISO Isometric segmentation, Native Native resolution segmentation
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always correctly translated in our 2D approaches. We 
resolved this issue by changing the process to 3D. Our 3D 
methods had a drop in image quality compared to the 2D 
translation. We believe this is due to the required resam-
pling from the 1-mm isotropic output to the native reso-
lution of the test data. Ultimately, the image-to-image 
translation facilitated MRI segmentation using a pre-
trained CT segmentation algorithm for all spine regions.

Our results extend prior works that have been limited 
to high-resolution gradient-echo Dixon T1-weighted 
sequences to CT translations [14, 32, 33] as well as 
to intra-modality MR translations for different con-
trasts from standard T1-weighted and T2-weighted 
TSE sequences to short tau inversion recovery [34] or 
T2-weighted fat-saturated images [35], frequently used 
in spinal MRI. Commercial products are available for 
MRI to CT translation [36, 37]. However, in contrast to 
our approach, they require a dedicated, isotropic gra-
dient-echo sequence. They are unavailable for stand-
ard T1-weighted or even T2-weighted TSE sequences. 
Acquiring an additional, dedicated image only for seg-
mentation is resource and time demanding in everyday 
medical practice and not possible at all in existing data 
like in available large epidemiological studies like the 
German National Cohort.

Mature preprocessing pipelines enable image trans-
lation in other body regions [8]. For example, in brain 
MRI, every sample can rigidly be registered to an atlas, 
and the non-brain tissue is removed. However, in the 
spine, where vertebrae may be moving between acquisi-
tions, such a simple, rigid preprocessing is impossible. 
Additionally, the mapping of intensities from the MR to 
the CT domain is highly dependent on the anatomy, e.g., 
fat and water would have similar signals in T2-weighted 
MRI but have substantially different density values in CT, 
despite being in close anatomical location with a high 
intersubject variability. Consequently, a network can-
not learn the relationship between anatomy and inten-
sity translation based on unpaired images; the tested 
unpaired method CUT [7] would require additional con-
straints to learn an anatomically correct translation. Syn-
Diff [17] has an unpaired CycleGAN [6] in its formulation 
and worked on paired datasets similar to paired methods. 
Still, it could not correctly translate the posterior struc-
tures on unmatched data. We demonstrated that our 
rigid registration is a required preprocessing for a cor-
rect translation, even for SynDiff, and we believe that bet-
ter processing, such as deformable registration, can lead 
to better results. However, to account for inter-vertebra 
movement between two acquisitions due to different 
patient lying positions between CT and MR acquisi-
tions would require whole vertebral segmentation. Other 
papers combat this issue by using axial slices, which only 

need a local vertebra registration [10–12] or only focus-
ing on the lumbar spine [5–9], where acquisitions can be 
performed in a more standardized patient positioning 
than the cervical spine. Oulbacha and Kadourys’s et  al. 
[38] also use sagittal slices like our study. However, they 
face similar challenges with incorrectly translating pos-
terior structures, as observed in their figures. To address 
these issues, we employed dedicated preprocessing tech-
niques and transitioned to a 3D approach.

Our study has limitations. Our pipeline enables us 
to generate segmentations that are available in other 
modalities. This method cannot produce segmentations 
of structures that are not segmented but visible in the 
input domain. We observed weaknesses in translating 
neck and thoracic regions when using external images, 
especially for the 2D methods. The posterior elements 
in the thoracic region were still the most difficult, and 
the segmentation and the translation showed more 
errors compared to other regions. Classifier-free guid-
ance showed substantial improvement in language-
based DDIM generation [30] and had a visible impact 
in 2D translation on an out-of-training distribution 
like the German National Cohort images. Still, the dif-
ference in image quality and the DSC are too small to 
measure. Therefore, we excluded classifier-free guidance 
[30] from our analysis, as the effect was too small to be 
investigated in available test sets. The same is true for 
testing a different number of time steps and the deter-
minism parameter η . We go in more detail about these 
inference parameters in the Supplemental materials.

In conclusion, we were able to show that image seg-
mentations can be generated in a novel target domain 
without manual annotations if segmentations exist 
for another image domain, and paired data for both 
domains can be obtained. For the spine, we identified 
minimum registration requirements for paired image-
to-image translations. With this approach, SynDiff, 
Pix2Pix, and DDIM enabled translation of 2D images 
resulting in similarly good downstream segmentations. 
We introduced a 3D variant of conditional diffusion 
for image-to-image translation that improved the seg-
mentation of posterior spinal elements compared to 2D 
translation. The synthesized segmentations represent a 
novel ground truth for MRI-based spine segmentations 
that are prerequisites for spine studies involving large 
cohorts.

Abbreviations
2D  Two‑dimensional
3D  Three‑dimensional
CM  Center of mass
CUT   Contrastive unpaired translation
DDIM  Denoising diffusion implicit model
DSC  Dice similarity coefficient
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GAN  Generative adversarial network
MRSSegClg  MRSpineSeg Challenge
PSNR  Peak signal‑to‑noise ratio
SA‑UNet  Self‑attention U‑network
SSIM  Structural similarity index metric
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