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Abstract 

Background To investigate the potential of combining compressed sensing (CS) and deep learning (DL) for acceler-
ated two-dimensional (2D) and three-dimensional (3D) magnetic resonance imaging (MRI) of the shoulder.

Methods Twenty healthy volunteers were examined using at 3-T scanner with a fat-saturated, coronal, 2D proton 
density-weighted sequence with four acceleration levels (2.3, 4, 6, and 8) and a 3D sequence with three acceleration 
levels (8, 10, and 13), all accelerated with CS and reconstructed using the conventional algorithm and a new DL-based 
algorithm (CS-AI). Subjective image quality was evaluated by two blinded readers using 6 criteria on a 5-point Likert 
scale (overall impression, artifacts, and delineation of the subscapularis tendon, bone, acromioclavicular joint, and gle-
noid labrum). Objective image quality was measured by calculating signal-to-noise-ratio, contrast-to-noise-ratio, 
and a structural similarity index measure. All reconstructions were compared to the clinical standard (CS 2D accel-
eration factor 2.3; CS 3D acceleration factor 8). Additionally, subjective and objective image quality were compared 
between CS and CS-AI with the same acceleration levels.

Results Both 2D and 3D sequences reconstructed with CS-AI achieved on average significantly better subjec-
tive and objective image quality compared to sequences reconstructed with CS with the same acceleration fac-
tor (p ≤ 0.011). Comparing CS-AI to the reference sequences showed that 4-fold acceleration for 2D sequences 
and 13-fold acceleration for 3D sequences without significant loss of quality (p ≥ 0.058).

Conclusions For MRI of the shoulder at 3 T, a DL-based algorithm allowed additional acceleration of acquisition 
times compared to the conventional approach.

Relevance statement The combination of deep-learning and compressed sensing hold the potential for further 
scan time reduction in 2D and 3D imaging of the shoulder while providing overall better objective and subjective 
image quality compared to the conventional approach.

Trial registration DRKS00024156.

Key points  
• Combination of compressed sensing and deep learning improved image quality and allows for significant accelera-
tion of shoulder MRI.

• Deep learning-based algorithm achieved better subjective and objective image quality than conventional com-
pressed sensing.

*Correspondence:
Thomas Dratsch
thomas.dratsch@uk-koeln.de
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41747-023-00377-2&domain=pdf
http://orcid.org/0000-0003-4014-7763


Page 2 of 13Dratsch et al. European Radiology Experimental            (2023) 7:66 

• For shoulder MRI at 3 T, 40% faster image acquisition for 2D sequences and 38% faster image acquisition for 3D 
sequences may be possible.

Keywords Artifacts, Artificial intelligence, Deep learning, Magnetic resonance imaging, Shoulder joint

Graphical Abstract

Background
The shoulder is the third most common site of muscu-
loskeletal pain [1]. Common injuries of the shoulder, 
such as rotator cuff tears, have a high prevalence in the 
general population [2, 3], negatively affect productiv-
ity and quality of life [4], and are associated with a high 
socioeconomic burden [5]. Magnetic resonance imag-
ing (MRI), with its high tissue contrast, plays a criti-
cal role in the diagnosis and treatment evaluation of 
shoulder injuries [6]. However, with an ever increasing 
demand for MRI [7] and acquisition times for an MRI 
of the shoulder ranging between 15 and 20 min [8], the 
number of patients that can be imaged at a given time 
is limited. Thus, several possibilities, such as reduced 
scanning protocols [8], or new techniques such as par-
allel imaging (e.g., generalized autocalibrating partial 
parallel acquisition, GRAPPA) [9], and compressed 
sensing (CS) [10], have been developed to increase the 
speed of image acquisition without sacrificing image 
quality. The CS approach uses random undersampling 

of the k-space to reconstruct the MRI signal with fewer 
measurements, thereby reducing image acquisition 
times. Several studies have shown that CS can be used 
to reduce scan times for multiple anatomical regions 
[11–14], including the shoulder [15], while still main-
taining diagnostic image quality. However, artifacts, 
such as aliasing and blurring, which are introduced at 
higher acceleration factors, limit further acceleration of 
image acquisition using conventional CS.

With the recent advent of deep learning (DL) and its 
integration into radiology, one approach that has been 
suggested to overcome those limitations is to combine CS 
and DL [16]. As part of the 2019 fastMRI challenge, Pez-
zotti et al. [16, 17] introduced Adaptive-CS-Net, a neural 
network for improved reconstruction of MRI of the knee, 
which allowed reduced acquisition times by a factor of 8. 
Adaptive-CS-Net was then further developed to extend 
to a wider range of acceleration factors and anatomical 
regions, including the shoulder. However, so far, there 
have been no studies testing the clinical feasibility and 
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limitations of Adaptive-CS-Net to accelerate MR images 
of the shoulder. Thus, the aim of the current study was 
to determine whether combining CS with DL is a feasi-
ble approach to further decrease the acquisition times of 
shoulder MR images while maintaining diagnostic image 
quality.

Methods
Study population
This single-center study was approved by our institu-
tional review board and registered in the national Clini-
cal Trials Register (DRKS00024156). Recruitment of 
volunteers and acquisition of imaging data were carried 
out from February to March 2022. Written informed 
consent was obtained from all participants included in 
the study. Exclusion criteria were pregnancy, age below 
18, implanted MRI conditional or unsafe devices, previ-
ous surgery or known pathologies of the shoulder, and 
shoulder related pain in the last 6 months.

MRI acquisition and reconstruction
A whole-body 3-T MRI system (Philips Ingenia 3.0  T, 
Philips, Amsterdam, The Netherlands) with a dedicated 
receiver 8-channel shoulder coil was used. All volun-
teers were placed supine, head-first on the table. For all 
sequences, the field-of-view covered the entire shoulder 
joint. The protocol included a fat-saturated two-dimen-
sional (2D) coronal proton density-weighted sequence 
with four different acceleration levels (2.3, 4, 6, and 8) as 
well as a fat-saturated three-dimensional (3D) coronal 

proton density sequence with three different accelera-
tion levels (8, 10, and 13). Except for the acceleration fac-
tors, all other parameters were kept identical between the 
acquired sequences. Table  1 summarizes the sequence 
parameters used in this study. The sets of undersam-
pled k-space data from the different acceleration lev-
els were reconstructed into visually perceivable images 
using two methods: (1) a conventional approach (CS) and 
(2) a novel artificial intelligence (AI)-driven prototype 
(CS-AI).

The CS-AI reconstruction technique used in this study 
builds on compressed sensitivity encoding (SENSE), in 
which the parallel imaging technique SENSE and com-
pressed sensing are integrated into a single acceleration 
technique. Compressed SENSE is based on a non-uni-
form pseudorandom sampling scheme with multiple 
receiver coil elements after which an iterative recon-
struction scheme is performed in which a data consist-
ency term and a sparsity constraining term are balanced. 
The required sparsity is given in the wavelet domain and 
data consistency is preserved while performing an itera-
tive, regularized L1 minimization reconstruction tech-
nique. Being based on the compressed SENSE acquisition 
scheme, CS-AI employs a DL convolutional neural net-
work (“Adaptive—CS-Net”) introduced by Pezzotti et al. 
[16, 17]. The reconstruction of the original CS sampled 
data is improved by replacing the iterative, regularized 
L1 minimization reconstruction scheme by a set of mul-
tiscale network blocks in which in each block, a data 
consistency check per coil element is performed. This 

Table 1 Acquisition parameters for the different sequences and results for changes in the scan time

Only the acceleration factors were changed between the different sequences to keep them as comparable as possible

CS Compressed sensing, CS-AI Compressed sensing combined with a deep learning-based algorithm

Two-dimensional sequences Three-dimensional sequences

Sequence/Parameter CS 2.3
CS-AI 2.3

CS 4
CS-AI 4

CS 6
CS-AI 6

CS 8
CS-AI 8

CS 8
CS-AI 8

CS 10
CS-AI 10

CS 13
CS-AI 13

Echo time [ms] 40 40 40 40 152 152 152

Repetition time [ms] 4,169 4,169 3,917 3,917 1,100 1,100 1,100

Flip angle [degrees] 90 90 90 90 90 90 90

Field of view [mm] 160 × 160 160 × 160 160 × 160 160 × 160 160 × 177 × 100 160 × 177 × 100 160 × 177 × 100

Slice thickness [mm] 3 3 3 3  −  −  − 

Number of slices 36 36 36 36  −  −  − 

Gap [mm] 0.3 0.3 0.3 0.3  −  −  − 

Acquisition voxel size [mm] 0.4 × 05.5 0.4 × 05.5 0.4 × 05.9 0.4 × 05.7 0.7 × 0.7 × 0.7 0.7 × 0.7 × 0.7 0.7 × 0.7 × 0.7

Reconstruction voxel size [mm] 0.2 × 0.2 0.2 × 0.2 0.2 × 0.2 0.2 × 0.2 0.34 × 0.34 × 0.4 0.34 × 0.34 × 0.4 0.34 × 0.34 × 0.4

Turbo factor/Echo train length 12 12 10 10 35 35 35

CS factor 2.3 4 6 8 8 10 13

Scan time [s] 167 100 78 63 289 232 179

Saved scan time [s]  − 67 89 104  − 57 110

Scan time reduction [%]  − 40 53 62  − 19 38
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is similar to the CS reconstruction and avoids deviation 
of the resulting image from the measured data, prevents 
the introduction of phantom structures, and minimizes 
data loss. Compared to the implementation by Pezzotti 
et  al. [16, 17], where network training was exclusively 
performed on a large-scale dataset of knee data, the 
algorithm was extended by using training data of about 
740,000 MRI images with various anatomies, contrasts, 
and field strengths (1.5 and 3  T). Both the acquisition 
and reconstruction algorithms (CS and CS-AI) were pro-
vided by the manufacturer (Compressed SENSE, Philips 
Healthcare).

Subjective image analysis
All scans were exported as DICOM files to the clinical 
Picture Archiving and Communication System (Impax 
EE R20, Agfa Healthcare, Mortsel, Belgium). Two radi-
ologists with 4 and 8 years of experience independently 
reviewed all images. For the subjective reading, the 
images were presented in random order and both readers 
were blinded to the scan sequence and reconstruction. 
All blinded images of a subject were available at once for 
both readers. Readers were free to choose window width 
and level settings, and the review was performed over 
a period of 6  weeks. Using a 5-point Likert scale, each 
reader independently evaluated the delineation of the fol-
lowing anatomical structures for all sequences: subscapu-
laris tendon, bone, acromioclavicular joint, and glenoid 
labrum. Overall image impression and visible artifacts 
were rated additionally on a 5-point Likert scale, result-
ing in a total of 6 subjective ratings for each of the 14 
images (2D: CS 2.3/CS-AI 2.3, CS 4/CS-AI 4, CS 6/CS-AI 
6, CS 8/CS-AI 8; 3D: CS 8/CS-AI 8, CS 10/CS-AI 10, CS 
13/CS-AI 13) reconstructed for every patient. Table  2 
shows an overview of the used scale.

Objective image analysis
Objective image analysis: region of interest (ROI)‑based
The Picture Archiving and Communication System was 
used for manual positioning of ROI in the following ana-
tomical structures of the shoulder joint: muscle (deltoid 
muscle), bone (proximal humerus), and tendon (supraspi-
natus tendon). Signal pathology in the respective areas 

was excluded prior to measurement. Average ROI were 
92.10 ± 1.37  mm2 (mean ± standard deviation [SD]) for 
the bone, 91.70 ± 2.10  mm2 for the muscle, and 5.85 ± 1.68 
 mm2 for the tendon measurements. Similar to Lee et al. 
[18], signal-to-noise ratios (SNRs) for the bone, muscle, 
and tendon were derived from the ROIs by dividing the 
average signal intensity (SI) value by the standard devia-
tion of the tissue. Additionally, contrast-to-noise ratios 
(CNRs) for the bone-tendon, tendon–muscle, and bone-
muscle were calculated with the following equations, as 
described in previous studies [12, 18, 19]:

Objective image analysis: pixel‑based
To assess the similarity between the accelerated images 
and the reference sequences, we also calculated the struc-
tural similarity index measure (SSIM) using CS 2.3 for 2D 
sequences and CS 8 for 3D sequences as the reference 
[20]. An in-house tool developed using the scikit-image 
toolbox was used to carry out a pixel-wise analysis of the 
central slice of each scan [21–23]. The resulting SSIM 
values represent a percentual deviation for each sequence 
from the reference scan, with higher values indicating 
greater similarity to the reference image.

Statistical analysis
GraphPad Prism version 9.0.1 for Mac OS X (Graph-
Pad Software, Boston, USA) was used for all statistical 
analyses. For the subjective image analysis, the values 
from both readers for each sequence were averaged. 
To assess the interrater agreement between both read-
ers, Krippendorff ’s alpha was calculated, with a Krip-
pendorff ’s alpha ≥ 0.80 indicating high agreement, 
0.667–0.79 indicating moderate agreement, and < 0.667 
indicating poor agreement [24]. After assessing nor-
mal distribution of the data, mixed models fitted with 
the restricted maximum likelihood method, REML 
[25], were used to analyze the effect of acceleration 
level (2D: 2.3, 4, 6, and 8; 3D: 8, 10, and 13) and recon-
struction method (CS versus CS-AI) on indicators of 

(SI a− SI b)/ SD a
2
+ SD b

2
.

Table 2 Ratings for the anatomical structures, diagnostic certainty/overall image impression, and artifacts

Level Anatomical structures Overall image impression Artifacts

1 Not visible/distinguishable Not acceptable/ no diagnostic value Massive artifacts

2 Barely visible Very limited diagnostic value Significant artifacts

3 Adequately visible Acceptable for most diagnoses Acceptable artifacts

4 Good visibility Good for majority of diagnoses Minimal artifacts

5 Excellent visibility Optimal No artifacts
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subjective (overall impression, artifacts, and delinea-
tion of the subscapularis tendon, the bone, the acromi-
oclavicular joint, and the glenoid labrum) and objective 
image quality (signal- and contrast-to-noise-ratio as 
well as the structural similarity index measure). As post 
hoc tests Sidak’s multiple comparisons test [26] was 
used to compare the different reconstruction meth-
ods (CS versus CS-AI) at the different acceleration 
levels. Additionally, Dunnett’s multiple comparisons 
test [27] was used to compare all sequences to the ref-
erence sequences (2D: CS 2.3; 3D: CS 8). All post hoc 
tests were corrected for multiple comparisons. Data are 
reported as the mean ± SD. A p value below 0.05 was 
considered statistically significant. A priori sample size 
calculation was performed using G*power 3.1.9.7 based 
on previous results for acceleration techniques in knee 
imaging [12]. A minimum number of 19 volunteers are 
needed to detect a difference of 0.2 points on the Likert 
scale with 0.3 SD, alpha = 0.05, and a power of 0.8.

Results
Study population
Twenty young, healthy volunteers were included. They 
were 9 males and 11 females; age 30.75 ± 4.45 years, range 
23 − 37  years; weight 69.95 ± 9.40  kg, range 53 − 91  kg; 
and height 172.60 ± 9.00 cm, range 160 − 186 cm).

Image analysis
Scan time decreased with increasing CS factor for both 
2D and 3D sequences. An overview of the duration of the 
sequences is shown in Table 1. Figures 1 and 2 show recon-
structions of a 2D and 3D sequence using CS and CS-AI at 
the respective acceleration levels. Figures 3 and 4 illustrate 
clear delineation of anatomical landmarks for 2D and 3D 
sequences. Upon review of the acquired images, it was dis-
covered that one participant suffered from mild insertional 
tendinopathy of the M. supraspinatus tendon. Figure  5 
shows the pathology in a 2D sequence with acceleration 
factors 2.3 and 4 reconstructed using CS and CS-AI.

Fig. 1 Comparison of a two-dimensional sequence reconstructed using conventional compressed sensing (CS) and compressed sensing 
combined with a deep learning-based algorithm (CS-AI) with acceleration levels of 2.3, 4, 6, and 8. Note the decreasing image quality 
with increasing acceleration factor, as well as the enhanced image quality of the CS-AI images compared to the equivalent CS images
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Subjective image analysis
Interrater agreement was assessed using Krippendorff´s 
alpha, indicating moderate interrater agreement for the 
subjective scoring over all acceleration factors (Krippen-
dorff’s alpha = 0.72). Mixed models (restricted maximum 
likelihood method) demonstrated a significant effect of 
the acceleration factors on the subjective measures of 
image quality (p < 0.001).

Images reconstructed using CS-AI were rated signifi-
cantly better than the respective sequences reconstructed 
using CS for all acceleration levels and all evaluated crite-
ria (all p ≤ 0.011; see Table 3), except for the delineation 
of the bone, the glenoid labrum, and the overall image 

impression in the 2D sequences with the acceleration fac-
tor 2.3, where there was no significant difference between 
CS and CS-AI sequences; Fig. 6 shows the mean subjec-
tive ratings of the overall image quality.

Regarding the comparison to the 2D reference 
sequence (CS 2.3), ratings for the sequences recon-
structed using CS-AI did not differ significantly from 
the reference sequence for the delineation of the sub-
scapularis tendon, the bone, the acromioclavicular 
joint, and the glenoid labrum as well as visible artifacts 
for an acceleration factor up to 6 and for the over-
all image quality for an acceleration factor up to 4 (all 
p ≥ 0.221 see Table 3).

Fig. 2 Comparison of a three-dimensional sequence reconstructed conventional compressed sensing (CS) and compressed sensing combined 
with a deep learning-based algorithm (CS-AI) with acceleration levels of 8, 10, and 13. Note the enhanced image quality of the CS-AI images 
compared to the equivalent CS images, especially the reduced image noise and the clear delineation of the glenoid labrum
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Regarding the comparison to the 3D reference sequence 
(CS 8), superior ratings for the reconstruction using 
CS-AI were obtained for all criteria of subjective image 
quality for an acceleration factor up to 13 (all p < 0.001).

Objective image analysis
Mixed models (restricted maximum likelihood method) 
demonstrated a significant effect of the acceleration 
factors on the objective measures of image quality 
(p < 0.001). SNR of the bone and muscle as well as 
CNR of the bone/muscle and tendon/muscle were sig-
nificantly higher in the sequences reconstructed using 
CS-AI compared to the sequences reconstructed using 
CS for all acceleration levels (all p ≤ 0.003; see Table 4); 
Fig.  7 shows the mean signal-to-noise-ratio for mus-
cle. There was a slight tendency for SNR of the bone 
to increase with higher acceleration levels in the 3D 
sequences; however, this increase was not statisti-
cally significant. SNR tendon did not differ significantly 
between both reconstruction algorithms (all p ≥ 0.589). 
CNR bone-tendon was significantly higher for the 2D 
CS-AI sequences reconstructed with an acceleration fac-
tor of 8 (p = 0.002) and the 3D CS-AI sequences recon-
structed with an acceleration factor of 8 (p = 0.006) and 
10 (p = 0.001; see Table 4).

Fig. 3 Comparison of a two-dimensional sequence reconstructed using conventional compressed sensing (CS) with acceleration factor 2.3 
and compressed sensing combined with a deep learning-based algorithm (CS-AI) with acceleration factor 4 in coronal plane illustrating clear 
delineation of the greater tuberosity (a), supraspinatus tendon (b), and biceps anchor (c)

Fig. 4 Comparison of a three-dimensional sequence reconstructed 
using conventional compressed sensing (CS) with acceleration factor 
8 and compressed sensing combined with a deep learning-based 
algorithm (CS-AI) with acceleration factor 13 in coronal 
and transverse plane illustrating clear delineation of the biceps 
tendon (a), posterior labrum (b), anterior labrum (c), infraspinatus 
muscle (d), and subscapular muscle (e)
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Regarding the comparison to the 2D reference 
sequence (CS 2.3), sequences reconstructed using CS-AI 
did not differ significantly from the reference sequence 
with regard to the SNR bone, muscle and tendon as well 
as CNR bone-muscle, tendon–muscle, and bone-tendon 
for an acceleration factor up to 8 (all p ≥ 0.395).

Regarding the comparison to the 3D reference 
sequence (CS 8), sequences reconstructed using CS-AI 
did not differ significantly from the reference sequence 
with regard to the SNR tendon and CNR bone-tendon for 
an acceleration factor up to 13 (all p ≥ 0.058) and scored 
significantly higher with regard to SNR bone and muscle 
as well as CNR tendon–muscle and CNR bone-muscle 
than the reference sequence for an acceleration factor up 
to 13 (all p ≤ 0.001).

As for the structural similarity index measure, images 
reconstructed CS-AI received significantly higher values 
compared to the sequences reconstructed using CS for all 
acceleration levels (all p ≤ 0.001; see Table 4).

Discussion
The aim of the current study was to compare the subjec-
tive and objective image quality of a conventional newly 
developed image reconstruction algorithm for com-
pressed sensing at different acceleration factors for 2D 
and 3D imaging of the shoulder. Images reconstructed 
using CS-AI scored on average significantly higher on 
both subjective and objective measures of image quality 

Fig. 5 Comparison of a two-dimensional sequence reconstructed using 
conventional compressed sensing (CS) and compressed sensing combined 
with a deep learning-based algorithm (CS-AI) with acceleration levels 2.3 
and 4, showing mild insertional tendinopathy of the supraspinatus tendon

Table 3 Mean values and standard deviation for the subjective reading

CS Compressed sensing, CS-AI Compressed sensing combined with a deep learning-based algorithm

*/* denotes statistically significant differences (p ≤ 0.026) compared to the reference sequence (2D CS 2.3 or 3D CS 8.0) (* before diagonal slash) or the corresponding 
reconstruction with the same acceleration level (CS versus CS-AI) (* after diagonal slash)

Two-dimensional sequences Three-dimensional sequences

CS 2.3
CS-AI 2.3

CS 4
CS-AI 4

CS 6
CS-AI 6

CS 8
CS-AI 8

CS 8
CS-AI 8

CS 10
CS-AI 10

CS 13
CS-AI 13

Subscapularis tendon

 CS 4.68 ± 0.29 /* 3.83 ± 0.24 */* 3.20 ± 0.47 */* 2.38 ± 0.39 */* 4.05 ± 0.22 /* 4.00 ± 0.16 -/* 3.93 ± 0.29 -/*

 CS-AI 4.98 ± 0.11 */* 4.83 ± 0.37 -/* 4.87 ± 0.23 -/* 3.58 ± 0.47 */* 5.00 ± 0.00 */* 5.00 ± 0.00 */* 5.00 ± 0.00 */*

Bone

 CS 4.95 ± 0.15 /- 4.00 ± 0.28 */* 3.80 ± 0.30 */* 3.33 ± 0.37 */* 4.28 ± 0.26 /* 4.15 ± 0.24 -/* 4.03 ± 0.20 */*

 CS-AI 5.00 ± 0.00 -/- 4.95 ± 0.15 -/* 4.97 ± 0.11 -/* 4.48 ± 0.20 */* 5.00 ± 0.00 */* 5.00 ± 0.00 */* 5.00 ± 0.00 */*

Acromioclavicular joint

 CS 4.63 ± 0.28 /* 3.60 ± 0.38 */* 3.05 ± 0.28 */* 2.50 ± 0.36 */* 3.90 ± 0.21 /* 3.68 ± 0.34 */* 3.40 ± 0.35 */*

 CS-AI 4.90 ± 0.21 */* 4.75 ± 0.38 -/* 4.61 ± 0.32 -/* 3.73 ± 0.44 */* 4.98 ± 0.11 */* 4.95 ± 0.15 */* 4.90 ± 0.21 */*

Glenoid labrum

 CS 4.53 ± 0.34 /- 3.35 ± 0.40 */* 2.60 ± 0.50 */* 1.98 ± 0.41 */* 3.70 ± 0.30 /* 3.15 ± 0.33 */* 3.08 ± 0.37 */*

 CS-AI 4.83 ± 0.29 -/- 4.50 ± 0.54 -/* 4.50 ± 0.41 -/* 3.30 ± 0.55 */* 4.48 ± 0.20 */* 4.43 ± 0.18 */* 4.25 ± 0.30 */*

Artifacts

 CS 4.33 ± 0.29 /* 3.33 ± 0.37 */* 2.40 ± 0.45 */* 1.63 ± 0.28 */* 3.80 ± 0.30 /* 3.23 ± 0.30 */* 3.25 ± 0.26 */*

 CS-AI 4.83 ± 0.34 */* 4.40 ± 0.48 -/* 4.24 ± 0.35 -/* 3.15 ± 0.52 */* 4.93 ± 0.18 */* 4.78 ± 0.30 */* 4.65 ± 0.24 */*

Overall image impression

 CS 4.60 ± 0.31 /- 3.60 ± 0.35 */* 2.90 ± 0.26 */* 2.18 ± 0.24 */* 4.10 ± 0.31 /* 3.60 ± 0.38 */* 3.40 ± 0.35 */*

 CS-AI 4.78 ± 0.26 -/- 4.58 ± 0.37 -/* 4.34 ± 0.29 */* 3.45 ± 0.32 */* 4.95 ± 0.15 */* 4.93 ± 0.18 */* 4.85 ± 0.29 */*
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for 2D and 3D compared to the respective images recon-
structed using CS. These results are in line with previous 
studies that have shown similar performance using the 
same algorithm. For instance, Fervers et al. [28] showed 
significantly better subjective image quality for 3D 
T2-weighted images of the lumbar spine reconstructed 
using CS-AI compared to images reconstructed using 
CS. Additionally, higher objective and subjective image 
quality for sequences reconstructed using CS-AI have 
been reported for ankle and prostate [29, 30].

However, even though CS-AI does produce images 
with a higher subjective and objective image quality com-
pared to CS, the images may still not be of diagnostic 
quality if the acceleration level is too high. Therefore, we 
compared the images generated using CS-AI at the dif-
ferent acceleration levels to the reference sequence used 
in current clinical practice (2D CS 2.3; 3D CS 8) to find 
an optimal acceleration factor that generates images 
with similar subjective and objective image quality than 

the current clinical standard. Considering both objec-
tive and subjective image quality, 2D sequences recon-
structed using CS-AI with a 4-fold acceleration did not 
perform significantly worse than the same sequences 
reconstructed using regular CS with a 2.3-fold accelera-
tion, and 3D sequences reconstructed using CS-AI with 
a 13-fold acceleration did not perform significantly worse 
than the same sequences reconstructed using regular CS 
with an 8-fold acceleration.

Translating these acceleration factors into acquisi-
tion times, replacing the standard CS 2.3 sequence with 
the CS-AI 4 sequence (167  s versus 100  s) would result 
in 40% less acquisition time for 2D sequences and 38% 
for 3D sequences (standard CS 8 sequence with 289 ver-
sus CS-AI 13 with 179 s). Figures 3 and 4 illustrate clear 
delineation of anatomical landmarks at these two accel-
eration factors compared to the reference sequences 
(2D: CS 2.3 versus CS-AI 4; 3D: CS 8 versus CS-AI 13). 
Faster image acquisition can improve the efficiency of 

Fig. 6 Mean subjective ratings of the overall image quality for two-dimensional (a, b) and three-dimensional (c, d) sequences reconstructed using 
compressed sensing (CS) and compressed sensing combined with a deep learning-based algorithm (CS-AI). The comparison to the respective 
reference sequences is shown in b and d. *p ≤ 0.026, **p < 0.010, ***p < 0.001, and ****p < 0.0001
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an imaging center and increase patient access to imag-
ing. Additionally, decreasing the time patients spend in 
the scanner can help reduce motion artifacts, thereby 
increasing image quality and diagnostic accuracy, and 
improving overall patient comfort.

However, this study has several limitations. First, our 
study only included a small sample size of healthy volun-
teers. Even though the results of the two readers show that 
the delineation of anatomical structures was not inferior to 
the reference sequences, as a next step, patients with com-
mon shoulder pathologies should be scanned to ensure 
that image quality of pathological findings is also pre-
served. One of the common arguments against DL-based 
reconstruction algorithms is the fear of losing informa-
tion, whereby pathological findings are replaced by normal 
anatomy from the training data. To counteract this, the 
multiscale network used in this study includes the integra-
tion of a data consistency term per coil element compar-
ing the reconstructed data with the originally acquired data 
to ensure consistency [17]. Both objective and subjective 
image quality for sequences reconstructed using CS-AI was 
generally higher compared to conventional CS, showing 

that, based on the parameters measured in this study, there 
was no evidence for loss of information. Additionally, stud-
ies including patients with pathologies using the same 
CS-AI algorithm as in our study found no evidence for 
loss of information. For instance, Bischof et al. [30] found 
no difference in PI-RADS scores between images recon-
structed using CS-AI compared to images reconstructed 
using CS. Additionally, Feuerriegel et al. [31] found no loss 
of diagnostic information for common shoulder patholo-
gies in images acquired with an acceleration factor of 2.5. 
As for other reconstruction algorithms of the shoulder, 
both Hahn et al. [32] and Kaniewska [33] et al. showed sim-
ilar or better delineation of common shoulder pathologies 
using a deep learning based reconstruction technique to 
reduce motion artifacts based on the PROPELLER method, 
providing further evidence that DL-based techniques may 
accurately reproduce pathologies and not lead to loss of 
information. Nevertheless, future studies should include 
more participants as well as patients with different patholo-
gies to further evaluate the accuracy of the algorithm.

Second, our study only focused on a 2D and 3D pro-
ton density-weighted sequence of the shoulder. Whereas 

Table 4 Mean values and standard deviation for SNR and CNR

CS compressed sensing, CS-AI compressed sensing combined with a deep learning-based algorithm, CNR contrast-to-noise ratio, SNR signal-to-noise ratio, SSIM 
structural similarity index measure

*/* marking significant difference (p ≤ 0.025) compared to the reference sequence (* before diagonal slash) or the corresponding reconstruction with the same 
acceleration level (* after diagonal slash)

Two-dimensional sequences Three-dimensional sequences

CS 2.3
CS-AI 2.3

CS 4
CS-AI 4

CS 6
CS-AI 6

CS 8
CS-AI 8

CS 8
CS-AI 8

CS 10
CS-AI 10

CS 13
CS-AI 13

SNR bone
 CS 8.09 ± 1.50 /* 6.12 ± 1.19 */* 6.82 ± 1.45 */* 5.87 ± 1.25 */* 4.29 ± 0.78 /* 4.33 ± 0.80 -/* 4.59 ± 1.16 */*

 CS-AI 9.25 ± 2.14 */* 7.03 ± 1.56 */* 8.01 ± 1.76 -/* 7.94 ± 2.00 -/* 5.34 ± 1.28 */* 5.67 ± 1.51 */* 5.83 ± 1.26 */*

SNR muscle
 CS 10.31 ± 2.57 /* 6.81 ± 1.61 */* 6.36 ± 1.44 */* 5.44 ± 1.06 */* 10.40 ± 2.77 /* 9.61 ± 2.38 -/* 9.21 ± 2.08 -/*

 CS-AI 16.60 ± 5.36 */* 12.47 ± 3.55 */* 11.58 ± 4.61 -/* 9.80 ± 2.49 -/* 20.03 ± 9.09 */* 19.39 ± 7.08 */* 18.85 ± 7.01 */*

SNR tendon
 CS 3.21 ± 1.66 /- 2.57 ± 1.09 */- 2.77 ± 1.00 -/- 2.71 ± 1.14 -/- 3.80 ± 1.60 /- 3.90 ± 2.35 -/- 3.56 ± 1.90 -/-

 CS-AI 3.17 ± 1.67 -/- 2.52 ± 1.27 */- 2.90 ± 1.32 -/- 2.84 ± 1.76 -/- 3.81 ± 1.60 -/- 4.05 ± 2.66 -/- 3.42 ± 1.66 -/-

CNR bone/tendon
 CS 1.16 ± 0.92 /- 0.92 ± 0.59 -/- 1.06 ± 0.77 -/- 0.81 ± 0.54 */* 1.09 ± 0.83 /* 1.14 ± 1.03 -/* 0.93 ± 0.74 */-

 CS-AI 1.27 ± 1.13 -/- 1.03 ± 0.72 -/- 1.20 ± 0.98 -/- 1.00 ± 0.78 -/* 1.22 ± 0.86 */* 1.32 ± 1.22 */* 1.03 ± 0.83 -/-

CNR tendon/muscle
 CS 3.89 ± 1.97 /* 2.99 ± 1.24 */* 2.90 ± 1.29 */* 2.49 ± 0.86 */* 3.27 ± 1.28 /* 3.21 ± 1.55 -/* 3.24 ± 1.24 -/*

 CS-AI 4.68 ± 2.86 */* 3.89 ± 1.90 -/* 3.89 ± 2.56 -/* 3.50 ± 1.57 -/* 3.92 ± 1.70 */* 4.13 ± 2.25 */* 3.99 ± 1.93 */*

CNR bone/muscle
 CS 4.21 ± 1.54 /* 2.92 ± 0.95 */* 2.72 ± 0.96 */* 2.29 ± 0.78 */* 5.28 ± 1.21 /* 4.83 ± 1.21 -/* 4.80 ± 1.24 -/*

 CS-AI 5.98 ± 2.59 */* 4.57 ± 1.71 -/* 4.14 ± 1.92 -/* 3.89 ± 1.60 -/* 7.79 ± 2.29 */* 7.75 ± 2.70 */* 7.82 ± 2.60 */*

SSIM
 CS 1.00 ± 0.00 /* 0.57 ± 0.10 */* 0.56 ± 0.07 */* 0.50 ± 0.08 */* 1.00 ± 0.00 /* 0.64 ± 0.08 */* 0.63 ± 0.08 */*

 CS-AI 0.92 ± 0.03 */* 0.64 ± 0.11 */* 0.65 ± 0.08 */* 0.62 ± 0.08 */* 0.86 ± 0.03 */* 0.68 ± 0.09 */* 0.69 ± 0.09 */*
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studies have shown similar performance of DL-based 
reconstruction algorithms across different MRI sequences 
[34], there are also studies showing that performance can 
differ between MRI sequences [35]. Thus, future stud-
ies should also include other sequences besides proton 
density sequences (e.g., T1- and T2-weighted sequences) 
to ensure that objective and subjective image quality are 
equally well preserved in a wider range of sequences.

Third, our study did not include a reference sequence 
without acceleration. The clinically used sequences in 
our institution (a sequence with a 2.3-fold acceleration 
for 2D images and an 8-fold acceleration for 3D images) 
was used as the respective reference standard. Choos-
ing accelerated sequences as the reference standard may 
pose the risk of using a reference standard that already 
has reduced image quality. Showing non-inferiority 
against this reference standard may hide the fact that 
the image quality of the accelerated images is lower than 
the standard sequence without acceleration. Continually 

establishing faster reference standards and testing only 
for non-inferiority against the prior reference standard 
may pose the risk of hiding a continuous decrease in 
image quality. Thus, besides testing for non-inferiority, 
measures of image quality should also be interpreted 
with regard to an absolute standard. In our study, the 
non-inferior accelerated 2D sequence received an aver-
age rating of 4.58 and the 3D sequence of 4.85 from 
both readers. In the context of the 5-point rating scale 
used in our study, these scores lie in the middle between 
a score of 4 (good for majority of diagnoses) to 5 (opti-
mal). Therefore, even though we did not use a reference 
standard without acceleration, based on the results of 
the two readers, the accelerated sequences are of suffi-
cient diagnostic quality.

In conclusion, the results of our study show that the 
combination of deep-learning and compressed sensing 
hold the potential for further scan time reduction in 2D 
and 3D imaging of the shoulder while providing overall 

Fig. 7 Mean signal-to-noise-ratio for muscle for two-dimensional (a, b) and three-dimensional (c, d) sequences reconstructed using compressed 
sensing (CS) and compressed sensing combined with a deep learning-based algorithm (CS-AI). The comparison to the respective reference 
sequences is shown in b and d. * p ≤ 0.025, ** p < 0.01, *** p < 0.001, and **** p < 0.0001
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better objective and subjective image quality compared 
to the conventional approach. The implementation of 
this algorithm can help increase patient access to imag-
ing and reduce motion artefacts by decreasing the 
overall time patients spend in the scanner. The results 
encourage further clinical investigation, extending the 
use cases to a clinical population and a wider range of 
MRI sequences.
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