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Abstract 

Background Placenta accreta spectrum (PAS) is a rare, life-threatening complication of pregnancy. Predicting 
PAS severity is critical to individualise care planning for the birth. We aim to explore whether radiomic analysis 
of T2-weighted magnetic resonance imaging (MRI) can predict severe cases by distinguishing between histopatho-
logical subtypes antenatally.

Methods This was a bi-centre retrospective analysis of a prospective cohort study conducted between 2018 
and 2022. Women who underwent MRI during pregnancy and had histological confirmation of PAS were included. 
Radiomic features were extracted from T2-weighted images. Univariate regression and multivariate analyses were 
performed to build predictive models to differentiate between non-invasive (International Federation of Gynecol-
ogy and Obstetrics [FIGO] grade 1 or 2) and invasive (FIGO grade 3) PAS using R software. Prediction performance 
was assessed based on several metrics including sensitivity, specificity, accuracy and area under the curve (AUC) 
at receiver operating characteristic analysis.

Results Forty-one women met the inclusion criteria. At univariate analysis, 0.64 sensitivity (95% confidence interval 
[CI] 0.0−1.00), specificity 0.93 (0.38−1.0), 0.58 accuracy (0.37−0.78) and 0.77 AUC (0.56−.097) was achieved for predict-
ing severe FIGO grade 3 PAS. Using a multivariate approach, a support vector machine model yielded 0.30 sensitivity 
(95% CI 0.18−1.0]), 0.74 specificity (0.38−1.00), 0.58 accuracy (0.40−0.82), and 0.53 AUC (0.40−0.85).

Conclusion Our results demonstrate a predictive potential of this machine learning pipeline for classifying severe PAS cases.

Relevance statement This study demonstrates the potential use of radiomics from MR images to identify severe 
cases of placenta accreta spectrum antenatally.

Key points  
• Identifying severe cases of placenta accreta spectrum from imaging is challenging.

• We present a methodological approach for radiomics-based prediction of placenta accreta.

• We report certain radiomic features are able to predict severe PAS subtypes.

• Identifying severe PAS subtypes ensures safe and individualised care planning for birth.
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Graphical Abstract

Background
Placenta accreta spectrum (PAS) is a rare, life-threat-
ening complication of pregnancy where the placenta is 
abnormally attached to the uterine wall [1]. PAS is clas-
sified into three grades by the International Federation of 
Gynecology and Obstetrics (FIGO) [2], with FIGO grade 
3 being the most severe. Up to 50% of cases worldwide 
are undiagnosed during pregnancy, which is associated 
with significantly poorer maternal and fetal outcomes [3]. 
Predicting disease severity antenatally remains a major 
challenge. There is no consensus internationally on opti-
mal management, with variations in many aspects of 
clinical care [4].

Ultrasound and magnetic resonance imaging (MRI) 
are the imaging modalities of choice for diagnosing PAS 
antenatally [5, 6]. While PAS is usually first suspected 
from an ultrasound assessment, MRI plays an important 
role, such as for surgical planning and in the assessment 
of posterior or lateral defects [5, 7, 8].   Furthermore, 
some centres routinely perform MRI when ultrasound 
signs of PAS are seen [9]. However, the diagnostic accu-
racy of MRI is highly dependent on reader expertise and 
can incorrectly classify cases in up to 30% of cases [10].

Radiomics is a quantitative approach to medi-
cal imaging, where potential image biomarkers are 
extracted from images [11]. Several studies have 
applied radiomics to MR images in PAS and found 
radiomic features were useful in aiding diagnosis and 
predicting clinical outcomes such as massive obstet-
ric haemorrhage [12, 13]. These were summarised in 
a recent systematic review, which included 10 studies 
[14]. The review highlighted the varying methodologi-
cal quality of the radiomics PAS studies to date [14]. 
Many were limited by the significant heterogeneity in 
how PAS was defined, with only two studies reporting 
on histological data, which is considered the reference 
standard in diagnosing PAS [14, 15]. In one of the larg-
est studies included, over 70% of PAS cases had neither 
of the two most important and frequent predispos-
ing risk factors [16], which are a prior Caesarean sec-
tion and placenta previa [17]. Hence it is unclear what 
clinical or histopathological criteria were used to define 
PAS in many of these studies [14]. Furthermore, a lack 
of standardised methodology is an important limitation 
of all radiomics studies and remains a major challenge 
in the field [18].
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Therefore, the current literature is limited by the lack 
of standardised definitions for PAS and the varying qual-
ity of the radiomic methodology. We propose a methodo-
logical approach for image segmentation and a radiomic 
workflow for predicting severe FIGO grade 3 PAS. We 
describe the location and severity of PAS using stand-
ardised definitions as they are currently understood [2, 
15], use a standardised methodology for radiomic feature 
extraction [19], and provide an open source code for each 
step, with adherence to the Radiomics Quality Score [20] 
as much as was feasible. We report our results from a 
pilot test dataset.

Methods
Study population
Ethical approval was obtained from the National Mater-
nity Hospital, Dublin (EC30.2018) and Rotunda Hospital 
Dublin ethics committees (RAG 2019–10). Participants 
provided written, informed consent. Image data was 
obtained prospectively, and retrospectively analysed as 
part of a two-centre cohort from between January 2018 
to October 2022. Inclusion criteria were: consecutive 
participants who underwent MRI for suspicion of PAS 
based on ultrasound assessment [6], intraoperative find-
ings at the time of laparotomy found clinical features 
of PAS as defined by the FIGO classification [2], and 
examination by a specialist perinatal histopathologist 
(> 10  years of experience) who confirmed PAS on his-
tology [15]. Figure  1 shows an example of an included 
PAS case on MRI, with corresponding gross and micro-
scopic histopathology images. We excluded cases with 
MRI performed for suspicion of PAS, without clinical 
evidence of PAS intraoperatively or histopathological 
examination confirming the diagnosis, or those who 
gave birth outside of a participating centre. Placenta pre-
via was defined as the placenta completely covering the 
internal cervical os on transvaginal ultrasound beyond 
20 weeks of gestation [21].

PAS multidisciplinary team management
All participants in this study were cared for by a multidis-
ciplinary PAS specialist team. Antenatal imaging consists 
of ultrasound, performed by fetal-medicine specialists 
using both transabdominal and transvaginal ultrasound, 
and MRI, read and reported by specialist radiologists [22] 
(T.G., with over 15  years of experience; D.B., with over 
20  years of experience). Timing of elective delivery was 
between week 34 and week 36 of gestation, following a 
standardised surgical approach [23]. Cases confirmed 
intraoperatively as PAS undergo either myometrial resec-
tion or Caesarean hysterectomy.

MRI protocol
Patients were scanned on a 1.5-T scanner (Optima 450W 
MR, General Electric Healthcare, Waukesha, USA) 
(n = 40) or a 1.5-T scanner (MAGNETOM Sola, Sie-
mens Healthineers, Erlangen, Germany) (n = 7) using a 
T2-weighted sagittal two-dimensional balanced steady-
state free precession, b-SSFP, sequence with a slice thick-
ness of 4 mm, slice spacing of 1 mm, and a field of view of 
38 cm at both imaging sites. The MRI acquisition proto-
col of the placenta for the assessment of PAS performed 
at site 1 was previously described [24, 25].

Radiomics processing
The workflow for radiomics processing is summarised 
in Fig. 2. The code for these steps and methodology used 
is publicly available in the following repository: https:// 
github. com/ helen abart els91/ PASRa diomi cs. git

Image segmentation
Sagittal planes were used for segmentation as this 
allows an optimal view of the bladder, placental location 
and the cervix, and the relationship of these key organs 
of interest to each other, including the area of placen-
tal adherence or invasion. Images were manually seg-
mented on multiple representative slices with regions of 
interest (ROIs) by three independent investigators (H.B., 
D.B., R.M., with 4 over 20 and 6  years of experience). 
Investigators were aware of the purpose of the study 
but were blinded to the results of other imaging, or final 
intraoperative or histopathological outcomes. The seg-
mentation protocol was informed by a previous work 
where ROIs of the placenta proximal and remote to the 
prior Caesarean section scar showed significant differ-
ences in the distribution of radiomic features, which 
were associated with undergoing caesarean hysterec-
tomy for PAS [13]. Furthermore, we have previously 
reported a linear relationship between the distance 
from the internal cervical os to the most proximal part 
of the PAS defect as seen on MRI and estimated blood 
loss, with defects closer to the internal os associated 
with significantly higher blood loss [26]. Hence, we gen-
erated two placental ROIs, based on proximity to the 
area of adherence or invasive (inferior placental ROI, 
close to internal cervical os) and remote from this area 
(superior placental ROI). The image segmentation pro-
tocol is included in Supplementary materials.

Feature extraction
Radiomic feature extraction was performed using PyRa-
diomics [11], resulting in 106 radiomic features from 6 
feature families including shape, first-order (histogram-
based) and second-order (Gray Level Cooccurrence 

https://github.com/helenabartels91/PASRadiomics.git
https://github.com/helenabartels91/PASRadiomics.git
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Matrix, Gray Level Run Length Matrix, Gray Level 
Size Zone Matrix, and Gray Level Dependence Matrix) 
features, from the original image. Feature families and 
specific features used in this work are mathematically 
defined as per the PyRadiomics framework, as previ-
ously described (https:// pyrad iomics. readt hedocs. io/ 

en/ latest/ featu res. html). Separately, feature extraction 
was performed using convolutional image filters such 
as Laplacian of Gaussian (with 5 sigma levels: 1 level 
of wavelet decompositions resulting in eight derived 
images and images derived using square, square root, 
logarithm and exponential filters) resulting in another 

Fig. 1 A case of PAS FIGO grade 3: correlation between MRI and histopathology. a MRI sagittal view obtained at 30 weeks gestation. 
Complete placenta previa demonstrating features of PAS including abnormal intraplacental vascularity, myometrial thinning and placental 
bulge towards the bladder. b Fresh hysterectomy specimen showing lower uterine segment bulging and distention with minimal overlying 
serosa (X) from abnormal placentation. Placenta can be seen through the very thin remaining serosa (X). Arrow marks fundal uterine incision 
where the baby was delivered. c Gross cross section of cut specimen: FIGO 3a with outer 25% of the myometrium involved. Triangle marks area 
where area of placental "invasion" led to scar dehiscence, with only a thin area of residual myometrium remaining (red arrows). No invasion 
beyond serosa or involvement of other organs. d Microscopy shows invaded placenta with absent decidua basalis, trophoblast cells invading deep 
into the myometrium (black arrows) as a result of abnormal uterine remodelling from a previous Caesarean scar, and loss of the normal uterine 
contour. Evidence of chronic inflammation (red arrow) and edema are also present in the myometrium. MRI Magnetic resonance imaging, FIGO 
International Federation of Gynecology and Obstetrics, PAS Placenta accreta spectrum

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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1,714 radiomic features being extracted, for a total 
1,820 radiomic features extracted [21]. The preprocess-
ing steps are outlined in the parameter file available in 
the GitHub repository [27].

Feature selection
Optimal radiomic features were selected using an unsu-
pervised machine learning approach (Fig. 2) to identify 
a subset with strong predictive potential prior to model 
building. A correlation filter was applied to all the 1,820 
extracted radiomic features, eliminating features with 
a Pearson correlation > 0.80 in absolute value. A mini-
mum variance filter, Near Zero Variance, was applied to 

the remaining features to exclude any noninformative 
variables. As radiomic features are susceptible to vari-
ation between different MRI scanners [28], the distri-
butions of the remaining features from each of the two 
MRI scanners used in this study were compared by way 
of a two-sample, two-sided Mann–Whitney U test [29] 
at the 5% significance level; p values from these multi-
ple tests were corrected for false discovery rate (FDR) 
[30]. Features with high cross-scanner discrepancies, 
defined as an adjusted p value < 0.05, were removed. A 
test–retest analysis was performed on the remainder 
set of features to evaluate stability of the radiomic fea-
ture quantitation with respect to inter-reader variability 

Fig. 2 Summary of radiomics processing, feature reduction, and modelling. The N reported throughout applies to the number of radiomic features 
extracted when using convolutional image filters. kNN k-nearest neighbour, LASSO Least absolute shrinkage and selection operator, NZR Near zero 
variance, RF Random forest, SVM Support vector machine
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for a subset of 22 cases; the minimum Pearson correla-
tion between features extracted from the segmentations 
performed by different readers on the same cases was 
0.75, and the 5th percentile of Pearson correlations was 
0.969. For intraclass correlation (ICC), similar findings 
were found with a 5th ICC percentile of 0.965.

Predictive modelling
The following clinical variables were included for model-
ling: body mass index, maternal age, and the number of 
prior Caesarean sections. Differences between clinical 
variables and radiomic features were compared between 
FIGO grade 1–2 and grade 3 cases using a two-sample, 
two-sided Mann–Whitney U test. After p value adjust-
ment for FDR, there were no significant associations, 
with a smallest p value of 0.228.

Univariate logistic regression models trained using boot-
strapping, and tested on the out-of-bag bootstrap points, 
were used to identify the best performing radiomic fea-
tures. The performance of univariate models was assessed 
on the basis of the area under curve (AUC) at receiver 
operating characteristic (ROC) analysis and of overall pre-
diction accuracy. Four multivariate classifiers were trained 
for PAS prediction: least absolute shrinkage and selection 
operator (LASSO), random forest (RF), k-nearest neigh-
bour, and support vector machine (SVM) [31]. Their per-
formance was assessed using calibration curves, ROC 
analysis, sensitivity, specificity and accuracy. As three of 
these models (namely LASSO, RF, and SVM) include a 
built-in feature selection mechanism, final predictive fea-
ture sets were also analysed from these modelling pipelines.

One-sided, two-sample Mann–Whitney U tests were 
carried out to compare performance metrics between 
univariate and multivariate models at the 5% significance 
level after FDR correction. These tests were unpaired 
since the models were bootstrapped separately, each 
using different resamples.

Variable importance can be measured for these multi-
variate models to determine the extent of the contribution 
from each feature, and were thus analysed. In comple-
ment to these metrics, Principal component analysis 
(PCA), a dimensionality reduction technique used to 
explain the total variation (i.e., information) in the dataset 
along principal components arranged in decreasing order 
of relevance [32], was further performed to explore how 
the final feature sets summarised the overall information 
available for analysis. Biplots of the PCA-based projec-
tions of the final predictive feature sets were considered 
to assess the level of redundancy present in the latter, and 
possibly identify key features driving the prediction.

Statistical software
Statistical analysis for this study was performed in RStu-
dio (version 4.2.2 [33]). Feature reduction and model 
building were performed using R with the caret [34], 
pROC [35], and corrplot [36] packages.

Results
Forty-one participants met inclusion criteria (34 from 
site 1, 7 from site 2), including 18 FIGO grade 1–2 and 23 
FIGO grade 3 PAS cases. Participants had a median age 
of 37.0  years (interquartile range 34.0 × 40.0  years) and 
were predominantly of white Irish ethnicity (Table  1). 
All women had at least one prior Caesarean section, and 
29/41 (70.7%) underwent caesarean hysterectomy.

The feature filtering steps of correlation filter and 
Near Zero Variance yielded a subset of 47 features from 
the original images, and a subset of 225 features when 
including any features from either original and pre-fil-
tered images. Following removal of features with high 
cross scanner discrepancies, a final feature set of 204 fea-
tures were selected.

Univariate analyses
The radiomic features identified by univariate analysis 
as most strongly associated with FIGO grade 3 PAS are 
shown in Fig. 3. Clinical features included in the models 
were not of high importance, with only the number of 
previous Caesarean section included in the top ten accu-
racies or AUC from univariate logistic regression (Fig. 3).

From the superior placental ROI, exponential_glszm_
SizeZoneNonUniformityNormalized yielded the highest 
bootstrapped accuracy of 0.58 (95% confidence interval 
[CI] 0.39−0.77) and the highest AUC was 0.77 (0.56−0.97]) 
from log.sigma.5.0.mm.3D_firstorder_90Percentile. The 
highest sensitivity was wavelet.HHH_glszm_GrayLev-
elVarianceof 0.64 (0.0−1.00]), while specificity was 0.88 
(0.40−1.00]) from lbp.3D.m2_firstorder_Range. For the 
inferior placental ROI, squareroot_glszm_GrayLevel-
NonUniformity yielded the highest accuracy of 0.58 
(0.37−0.78) and a highest AUC 0.75 (0.56−0.94) from 
log.sigma.2.0.mm.3D_firstorder_Maximum. A sensitiv-
ity of 0.62 (95% CI: [0.61; 1]) was achieved from wavelet.
HHH_firstorder_Median, and a highest specificity of 0.93 
(0.38−1.00]) from square_firstorder_Minimum (Fig. 3b).

At univariate analysis, the inferior and superior placen-
tal ROIs yielded similar levels of performance (Fig.  3a). 
Subsets of individual radiomic features with high speci-
ficity were found in both regions, while sensitivity was 
poorer for both. The radiomic profiles of inferior and 
placental regions were, however, different with little 
correlation between them (Pearson ρ−0.26 and + 0.31). 
Thirty per cent of features were significantly different 
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between the regions (19.4% were significantly greater in 
the superior ROI, and 11.6% in the inferior ROI) at the 
5% significance level based on one-sided, two-sample 
Mann–Whitney U tests. These results indicate that high 
specificity was facilitated by different radiomic profiles in 
the inferior and superior placental areas.

Multivariate predictive modelling
For classification based on the four multivariate models 
(LASSO, RF, kNN, and SVM), calibration curves demon-
strated reasonable agreement between the predicted and 
observed rates of FIGO grade 3 PAS, indicating the mod-
els estimate the probability of PAS appropriately both for 
FIGO grade 3 and non-grade 3 cases (Fig. 4). Models had 
a similar performance overall for predicting FIGO grade 
3 PAS, with all models having a ROC of above 50% and 
specificity above 60% (Fig.  5a, b). Comparing the infe-
rior and superior placental ROIs, RF had a significantly 
higher accuracy in the superior compared to the infe-
rior placental ROI (Mann–Whitney U test, p = 0.003), 
while kNN had a significantly greater specificity in the 
inferior region versus superior region (Mann–Whitney 
U test, p = 0.001). There were no other significant differ-
ences between model performance between the inferior 
and superior ROIs (all p values > 0.05, Supplementary 
Figure S1).

The variables of highest importance for multivariate 
modelling are shown in Fig. 5c; radiomic features were 
ranked as highest importance, with no clinical features 
ranked as important for modelling. For multivariate 
models, radiomic features with image filters applied 
were selected at higher frequency than those from the 
original image, with no radiomic feature from the origi-
nal image feature ranked in the top 20 predictive fea-
tures for either the inferior and superior placental ROIs 
for predicting severe FIGO grade 3 PAS. Features from 
various families were included in the final feature sets 
for prediction, including first-order, Gray Level Run 
Length Matrix, Gray Level Size Zone Matrix, and Gray 
Level Dependence Matrix.

PCA was then performed to further explore the 
structure of final feature sets obtained from each model 
(Fig.  6), in particular to analyse how the final predic-
tors tend to group up into separate predictive clusters. 
To do this, the distribution in the PCA domain of all 
features used for model training was first analysed 
using k-means clustering [31]. Then, the final feature 
sets obtained from each model were mapped to these 
clusters in order to identify high-predictive clusters 
of features, and relevant features within these specific 
clusters. From this analysis, it was observed that all 
models contained the first-order mean level from the 
wavelet HLL-filtered image in their final feature subset. 

Table 1 Participant demographics and clinical outcome

Data are given in median (interquartile interval) unless otherwise stated
a Uterine conservation for the PAS group were cases who underwent myometrial resection. FIGO International Federation of Gynecology and Obstetrics

FIGO grade 1–2 (n = 18) FIGO grade 3 (n = 23)

Age (years) 36.0 (34.0–39.75) 39.0 (37.2–42.7)

Body mass index (kg/m2) 25.2 (23.4–29.3) 25.7 (23.0–30.1)

Parity 2 (1–3) 2 (1–2.5)

No of previous Caesarean section 1 (1–2) 2 (1–3)

Gestation at MRI (weeks + days) 29 + 0 (27 + 2 − 32 + 3) 28 + 1 (27 + 0–31 + 0)

Placental location on MRI, n (%)

 Placenta previa 18 (100.0) 22 (95.6)

 Anterior placenta previa 16 (88.0) 22 (95.6)

 Posterior placenta previa 2 (12.0) 0 (0.0)

Elective delivery, n (%) 30 (75.0) 7 (100.0)

Estimated blood loss (mL) 1,100 (735–3,250) 1,600 (1,100–5,800)

Red cell concentrate transfusion, n (%) 6 (33.3) 10 (43.5)

Surgical outcome

 Caesarean hysterectomy, n (%) 7 (38.9) 22 (95.7)

 Uterine  conservationa (%) 11 (61.6) 1 (4.3)

FIGO histological grade, n (%)

 1 4 (22.2) 0 (0.0)

 2 14 (77.8) 0 (0.0)

 3 0 (0.0) 23 (100)
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k-nearest neighbour and SVM selected the same feature 
subsets, due to the discretisation method used in evalu-
ating variable importance for these two models, which 
included only one clinical variable, i.e., the number of 
prior Caesarean sections. Both these models tended 
to use more information from some of the clusters in 
particular, i.e., groups of predictors with a high level of 
information overlap.

Discussion
We presented a methodological approach and results 
from a bi-centre study for radiomics-based prediction of 
disease severity for PAS. This work contributes a radiom-
ics study employing standardised clinical-histopatholog-
ical descriptions for PAS [2, 15]. Furthermore, radiomic 
feature extraction was performed using well described 
methods, with the steps of feature reduction and 

Fig. 3 Univariate bootstrapped linear regression models. a Box-plots showing performance metrics of models as estimated by accuracy, area 
under the curve (AUC) for top performing radiomic features. b Radiomic features with top performance metrics from univariate analysis; the table 
lists the variables with the highest performance for each performance metric of sensitivity, specificity, accuracy, and AUC from the univariate 
bootstrapped linear regression analysis (in bold, superior placental region of interest)
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predictive modelling provided as open source code. We 
found a high specificity of radiomics-based prediction for 
severe FIGO grade 3 PAS cases.

Our outcome for predictive modelling was histopatho-
logical diagnosis, the gold standard for diagnosis of PAS 
[2, 15]. Previous studies have used radiomic features to 
predict clinical outcomes such as undergoing caesar-
ean hysterectomy and blood loss [13, 37], however, we 
opted to build our models using only the histopatho-
logical FIGO grading of PAS severity. This was because 
clinical outcomes, such as performing a caesarean hys-
terectomy, reflect the local clinical practice rather than 
the suspected severity of disease from antenatal imaging. 
For example, centres practicing conservative manage-
ment with leaving the placenta in situ may have much 
lower hysterectomy rates compared to centres where 
hysterectomy is routinely performed for PAS cases [22, 
38]. Similarly, using haemorrhage as an outcome for pre-
dicting modelling is limited as blood loss measurement 
is highly heterogenous and often inaccurate, hence com-
plicating comparisons between studies using this as an 
outcome [39, 40]. Moreover, clinical outcomes are often 
not related to disease severity, but to other factors such 
as emergency delivery, as well as clinician consideration 

of the woman’s parity, her preferences and future fertil-
ity plans [3, 41]. Hence, we choose to develop our models 
on a reproducible histopathological outcome reflective of 
disease severity.

We found radiomic features from both placental 
ROIs had an overall similar performance. We hypoth-
esised that radiomic features from the inferior placen-
tal ROI would be more predictive of FIGO grade 3 PAS 
as this is the area where abnormal uterine remodelling 
from a prior Caesarean section has resulted in abnor-
mal placentation [42]. Our results suggests there are 
placental changes beyond the myometrial-bladder 
interface, which were useful for classifying severe PAS 
cases. Well-described MR imaging features, such as 
abnormal vascularisation of the placental bed and focal 
exophytic mass, are signs of severe PAS; they are usu-
ally seen at the level of the bladder, and are therefore 
included in the inferior placental ROI [5]. MRI features 
such as placental heterogeneity and T2-dark bands are 
seen throughout the whole placenta. Other features of 
severe PAS, such as intraplacental fetal vessel diameter, 
are also evident throughout the placenta [43]. These 
appear as darkened areas deep in the placenta. Hence, 
it follows that the most predictive features from the 
superior placental ROI were textural features describ-
ing differences in homogeneity and grey level values. 
This suggests that in PAS there may be textural changes 
throughout the whole placenta that were useful for our 
modelling.

We report the use of image pre-processing and use of 
pre-processing image filters resulted in significantly bet-
ter model performance compared to use of the original 
image features only. There is currently no consensus on 
how to perform these steps for MR images in radiomics, 
and is one of the many open challenges in radiomic pro-
cessing [18, 44]. Our results support the finding of pre-
vious radiomic studies in PAS, where radiomic features 
from image filters were more predictive and had higher 
diagnostic accuracy than those from the original image 
[45, 46]. Previously, some studies reported the use of pre-
processing image filters was shown to improve predictive 
performance of models [47, 48]. However, when datasets 
are small, limiting the analysis to radiomic features from 
the original image only showed similar results to when 
all radiomic features with image filters were included 
[47]. Here we also performed predictions using both the 
original image features and using all features from image 
filters. However, we found that features from the pre-pro-
cessed images had better predictive potential.

Initiatives such as the RQS [20] and Image Biomarker 
Standardisation Initiative [49] attempt to harmonise radi-
omic studies and produce results which can be validated 
and applied to clinical settings. Few radiomic studies to 

Fig. 4 Model calibration curves with associated 95% confidence 
bands (grey). The y-axis represents the actual probability, 
and the x-axis represents the predicted probability of placenta 
accreta spectrum. Each curve corresponds to a predictive model 
and assesses the alignment between mean estimated model 
probabilities obtained from that model, and observed event rates 
within each risk group. Here the risk groups are defined with respect 
to the quintiles of the predicted probabilities from that model. 
The closer the lines are to the ideal grey line (45° line), the better 
the prediction accuracy of the model
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Fig. 5 Multivariate bootstrapped models. The performance of each model for predicting severe FIGO grade 3 PAS from the inferior and superior 
placental ROI is shown. In panels a and b, the ROC curve and performance metrics for each of the models for predicting invasive FIGO grade 3 PAS 
are shown. Panel c reports the variable importance for radiomic and clinical features used in the prediction for SVM from the inferior and superior 
placental ROIs. CS Caesarean section, FIGO International Federation of Gynecology and Obstetrics, kNN: k-nearest neighbour, PAS Placenta accreta 
spectrum, R-GLM LASSO, Least absolute shrinkage and selection operator, RF Random forest, ROI Region of interest, SVM Support vector machine
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Fig. 6 Principal component analysis (PCA) from superior placental region of interest using all radiomic features from image filters. Panel a 
shows how the feature space used by each model from whole dataset. The plots show each model is using information for making predictions 
from different areas of the feature space. Panel b shows PCA for each model. Panel c shows the radiomic features within each PCA cluster that were 
important for each prediction model. This suggests some radiomic features could be used either interchangeably or in combination for placenta 
accreta spectrum prediction. **kNN yielded variable importance and PCA outputs identical to those obtained from support vector machine (SVM) 
as seen in panel b (due to the discretisation method used in evaluating variable importance for these two models) and therefore only the output 
for SVM are shown in c 
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date have included a RQS in their work [20], and many 
when assessed externally score poorly, with the studies in 
the systematic review on PAS radiomics having a median 
RQS score of 23% [14].

The RQS of this study was 38% (see Supplementary 
materials), however, this score was developed to assess 
the quality of oncologic radiomics studies and not stud-
ies exploring conditions such as PAS. This study, as with 
many studies not assessing oncologic data, is penalised 
by the RQS in a number of areas. Firstly, image data is 
not available at multiple time points. In oncology, the 
purpose of repeat imaging is to assess response to a 
treatment, such as chemotherapy. In PAS, the condi-
tion is limited to a distinct period of time—pregnancy—
and once the pregnancy is completed and the placenta 
removed, the condition can be considered as “treated”. 
Hence, unlike in cancer care, there is no indication to 
repeat imaging to assess treatment response.

Secondly, points are assigned for using open source 
images, segmentations and code. To our knowledge, 
these are not currently available for PAS. Any future such 
dataset would need to ensure the inclusion criteria are 
as described by the FIGO classification. For segmenta-
tions, while automated segmentations may be considered 
the ideal approach as it minimises the inter-observabil-
ity between segmentations, the applicability of trained 
algorithms to new datasets is currently limited and 
often results in failure of accurate segmentations [18]. 
Attempts to limit inter-observer variability in this study 
included calculation of the ICC between readers for a 
subset of segmentations, a clearly defined segmentation 
protocol and three investigators independently perform-
ing segmentations with cross-reference. If a disagreement 
arose, the third investigator acted as mediator.

PAS remains a rare complication of pregnancy, however 
the incidence is increasing as a result of the rise in the Cae-
sarean section rate [50]. Ultrasound and MRI both rely 
heavily on reader expertise of the clinician [5, 10]. In this 
study, radiomic features had a reasonable sensitivity for 
identifying severe FIGO grade 3 cases on univariate analysis, 
and a high specificity. This demonstrates the clinical poten-
tial of using radiomics to detect and rule out severe PAS. By 
identifying severe PAS subtypes, interventions associated 
with additional morbidity, such as elective preterm delivery 
and interventional radiology techniques, may be reserved 
for these cases. While these findings will require validation 
in an external dataset, this work supports the potential use 
of radiomics in predicting disease severity in PAS.

This study has several limitations. Firstly, the sample 
size is small. Nonetheless, results from our pilot data-
set demonstrated that radiomic features predicted severe 
PAS. Efforts to increase our sample size were employed, 
by using data available from another centre. As a result of 

the small sample size, it is not surprising that multivari-
ate models showed a drop in performance compared to 
univariate analysis given the loss of statistical power with 
a small N:P ratio. Some important MRI features of PAS 
such as myometrial thinning and interruption of the blad-
der wall will not be captured by the ROIs presented here, 
which include only the placenta. However, there was con-
sensus that there would be limited accuracy in delineating 
the myometrium which in many cases will be thinned to 
less than 1 mm or not be visible [5]; hence, only the pla-
centa was segmented for this work. Although segmenta-
tions were performed manually by three readers, radiomic 
features were very stable across the readers as demon-
strated by high Pearson correlation on test–retest analyses.

In summary, we present a suggested methodology for 
MRI segmentation and radiomic processing for pre-
dicting disease severity in PAS. Despite the restrictive 
size of the dataset, we found radiomic features have the 
potential predict severe FIGO grade 3 PAS cases. Radi-
omics to predict disease severity may assist clinicians 
in individualising care for women with PAS. Future 
studies can implement the prediction model using 
larger datasets to validate and improve upon the results 
reported here.

Abbreviations
AUC   Area under the curve
CI  Confidence interval
FDR  False discovery rate
FIGO  International Federation of Obstetrics and Gynaecology
ICC  Intraclass correlation
LASSO  Least absolute shrinkage and selection operator
MRI  Magnetic resonance imaging
PAS  Placenta accreta spectrum
PCA  Principal component analysis
RF  Random forest
ROC  Receiver operating characteristic
ROI  Region of interest
RQS  Radiomics Quality Score
SVM  Support vector machine

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s41747- 023- 00369-2.

Additional file 1. 

Authors’ contributions
Conceptualisation: Helena C Bartels, Jim O’Doherty, David P Brophy, Roisin 
MacDermott, David Atallah, Donal J Brennan, Kathleen M Curran. Method-
ology: Helena C Bartels, Jim O’Doherty, Eric Wolsztynski, David P Brophy, 
Roisin MacDermott, David Atallah, Souha Saliba, Constance Young, Paul 
Downey, Jennifer Donnelly, Tony Geoghegan, Donal J Brennan, Kathleen M 
Curran. Software: Helena C Bartels, Eric Wolsztynski, Jim O’Doherty, Kathleen 
Curran. Formal analysis: Helena C Bartels, Jim O’Doherty, Eric Wolsztynski, 
David P Brophy, Roisin MacDermott, David Atallah, Souha Saliba, Constance 
Young, Donal J Brennan, Kathleen M Curran. Data curation: Helena C Bartels, 
David P Brophy, Roisin MacDermott, David Atallah, Souha Saliba, Constance 
Young, Paul Downey, Jennifer Donnelly, Tony Geoghegan, Donal J Brennan, 

https://doi.org/10.1186/s41747-023-00369-2
https://doi.org/10.1186/s41747-023-00369-2


Page 13 of 14Bartels et al. European Radiology Experimental            (2023) 7:54  

Kathleen M Curran. Writing—original draft: Helena C Bartels, Jim O’Doherty, 
Eric Wolsztynski, Kathleen M Curran. Writing (review, editing): Helena C 
Bartels, Jim O’Doherty, Eric Wolsztynski, David P Brophy, Roisin MacDermott, 
David Atallah, Souha Saliba, Constance Young, Paul Downey, Jennifer Don-
nelly, Tony Geoghegan, Donal J Brennan, Kathleen M Curran. Supervision: 
Jim O’Doherty, Donal J Brennan, Kathleen M Curran. Funding acquisition: 
Helena C Bartels, Donal J Brennan. All authors read and approved the final 
manuscript.

Funding
This research was funded by the Medical Fund at the National Maternity 
Hospital, Dublin, Ireland. Eric Wolsztynski: funding from Science Foundation 
Ireland under grant number 12/RC/2289-P2, co-funded under the European 
Regional Development Fund.

Availability of data and materials
The code used for the methods presented in this manuscript are provided 
as open source in a public repository. The image data used for analysis is not 
publicly available.

Declarations

Ethics approval and consent to participate
Ethical approval was obtained from the National Maternity Hospital 
(EC30.2018) and Rotunda Hospital ethics committees (RAG 2019–10). Written 
informed consent was obtained from all subjects (patients) in this study.

Consent for publication
Not applicable.

Competing interests
Jim O’Doherty is an employee of Siemens Medical Solutions (which did not 
sponsor or fund this study). The remaining authors have no conflicts of inter-
est to declare.

Author details
1 Department of UCD Obstetrics and Gynaecology, School of Medicine, 
University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, 
Ireland. 2 Siemens Medical Solutions, Malvern, PA, USA. 3 Department of Radiol-
ogy & Radiological Science, Medical University of South Carolina, Charleston, 
SC, USA. 4 Radiography & Diagnostic Imaging, University College Dublin, 
Dublin, Ireland. 5 Statistics Department, University College Cork, Cork, Ireland. 
6 Insight Centre for Data Analytics, Dublin, Ireland. 7 Department of Radiology, 
St. Vincent’s University Hospital, Dublin, Ireland. 8 Department of Gynecol-
ogy and Obstetrics, Hôtel-Dieu de France University Hospital, Saint Joseph 
University, Beirut, Lebanon. 9 Department of Radiology: Fetal and Placental 
Imaging, Hôtel-Dieu de France University Hospital, Saint Joseph University, 
Beirut, Lebanon. 10 Department of Histopathology, National Maternity Hospital, 
Dublin, Ireland. 11 Department of Obstetrics and Gynaecology, Rotunda 
Hospital, Dublin, Ireland. 12 Department of Radiology, Mater Misericordiae 
University Hospital, Dublin, Ireland. 13 University College Dublin Gynaecological 
Oncology Group (UCD-GOG), Mater Misericordiae University Hospital and St 
Vincent’s University Hospital, Dublin, Ireland. 14 Systems Biology Ireland, School 
of Medicine, University College Dublin, Dublin, Ireland. 15 School of Medicine, 
University College Dublin, Dublin, Ireland. 

Received: 22 March 2023   Accepted: 26 June 2023

References
 1. Bartels HC, Postle JD, Downey P, Brennan DJ (2018) Placenta accreta 

spectrum: a review of pathology, molecular biology, and biomarkers. Dis 
Markers 2018:1507674. https:// doi. org/ 10. 1155/ 2018/ 15076 74

 2. Jauniaux E, Ayres-de-Campos D, Langhoff-Roos J, Fox KA, Collins S (2019) 
FIGO classification for the clinical diagnosis of placenta accreta spectrum dis-
orders. Int J Gynaecol Obstet 146:20–24. https:// doi. org/ 10. 1002/ ijgo. 12761

 3. Bartels HC, Rogers AC, O’Brien D, McVey R, Walsh J, Brennan DJ (2018) 
Association of implementing a multidisciplinary team approach in the 

management of morbidly adherent placenta with maternal morbidity 
and mortality. Obstet Gynecol 132:1167–1176. https:// doi. org/ 10. 1097/ 
aog. 00000 00000 002865

 4. Einerson BD, Silver RM (2019) Multidisciplinary teams in the management of 
placenta accreta spectrum disorders. Curr Obstet Gynecol Rep Rep 8:80–85

 5. Jha P, Pōder L, Bourgioti C et al (2020) Society of Abdominal Radiology 
(SAR) and European Society of Urogenital Radiology (ESUR) joint consen-
sus statement for MR imaging of placenta accreta spectrum disorders. 
Eur Radiol 30:2604–2615. https:// doi. org/ 10. 1007/ s00330- 019- 06617-7

 6. Collins SL, Ashcroft A, Braun T et al (2016) Proposal for standardized 
ultrasound descriptors of abnormally invasive placenta (AIP). Ultrasound 
Obstet Gynecol 47:271–275. https:// doi. org/ 10. 1002/ uog. 14952

 7. Tinari S, Buca D, Cali G et al (2021) Risk factors, histopathology and diag-
nostic accuracy in posterior placenta accreta spectrum disorders: system-
atic review and meta-analysis. Ultrasound Obstet Gynecol 57:903–909. 
https:// doi. org/ 10. 1002/ uog. 22183

 8. Palacios-Jaraquemada JM, Fiorillo A, Hamer J, Martínez M, Bruno C (2022) 
Placenta accreta spectrum: a hysterectomy can be prevented in almost 
80% of cases using a resective-reconstructive technique. J Maternal Fetal 
Neonatal Med 35:275–282. https:// doi. org/ 10. 1080/ 14767 058. 2020. 17167 15

 9. Palacios Jaraquemada JM, Bruno CH (2005) Magnetic resonance imaging 
in 300 cases of placenta accreta: surgical correlation of new findings. Acta 
Obstet Gynecol Scand 84:716–724. https:// doi. org/ 10. 1111/j. 0001- 6349. 
2005. 00832.x

 10. Einerson BD, Rodriguez CE, Kennedy AM, Woodward PJ, Donnelly MA, 
Silver RM (2018) Magnetic resonance imaging is often misleading when 
used as an adjunct to ultrasound in the management of placenta accreta 
spectrum disorders. Am J Obstet Gynecol 218:618.e611-618.e617. https:// 
doi. org/ 10. 1016/j. ajog. 2018. 03. 013

 11. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge 
between medical imaging and personalized medicine. Nat Rev Clin 
Oncol 14:749–762. https:// doi. org/ 10. 1038/ nrcli nonc. 2017. 141

 12. Peng L, Zhang X, Liu J et al (2022) MRI-radiomics-clinical-based nomogram 
for prenatal prediction of the placenta accreta spectrum disorders. Eur Radiol. 
https:// doi. org/ 10. 1007/ s00330- 022- 08821- 410. 1007/ s00330- 022- 08821-4.

 13. Do QN, Lewis MA, Xi Y et al (2020) MRI of the placenta accreta spectrum (PAS) 
disorder: radiomics analysis correlates with surgical and pathological outcome. 
J Magn Reson Imaging 51:936–946. https:// doi. org/ 10. 1002/ jmri. 26883

 14. Stanzione A, Verde F, Cuocolo R et al (2022) Placenta accreta spectrum 
disorders and radiomics: systematic review and quality appraisal. Eur J 
Radiol 155:110497. https:// doi. org/ 10. 1016/j. ejrad. 2022. 110497

 15. Hecht JL, Baergen R, Ernst LM et al (2020) Classification and reporting 
guidelines for the pathology diagnosis of placenta accreta spectrum 
(PAS) disorders: recommendations from an expert panel. Mod Pathol 
33:2382–2396. https:// doi. org/ 10. 1038/ s41379- 020- 0569-1

 16. Ye Z, Xuan R, Ouyang M, Wang Y, Xu J, Jin W (2022) Prediction of placenta 
accreta spectrum by combining deep learning and radiomics using T2WI: 
a multicenter study. Abdom Radiol (NY) 47:4205–4218. https:// doi. org/ 
10. 1007/ s00261- 022- 03673-4

 17. Collins SL, Alemdar B, van Beekhuizen HJ et al (2019) Evidence-based guide-
lines for the management of abnormally invasive placenta: recommenda-
tions from the International Society for Abnormally Invasive Placenta. Am J 
Obstet Gynecol 220:511–526. https:// doi. org/ 10. 1016/j. ajog. 2019. 02. 054

 18. van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) 
Radiomics in medical imaging-"how-to" guide and critical reflection. 
Insights Imaging 11:91. https:// doi. org/ 10. 1186/ s13244- 020- 00887-2

 19. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational 
radiomics system to decode the radiographic phenotype. Cancer Res 
77:e104–e107. https:// doi. org/ 10. 1158/ 0008- 5472. Can- 17- 0339

 20. Park JE, Kim HS, Kim D et al (2020) A systematic review reporting quality 
of radiomics research in neuro-oncology: toward clinical utility and qual-
ity improvement using high-dimensional imaging features. BMC Cancer 
20:29. https:// doi. org/ 10. 1186/ s12885- 019- 6504-5

 21. Jauniaux E, Alfirevic Z, Bhide AG et al (2019) Placenta praevia and pla-
centa accreta: diagnosis and management: green-top guideline No. 27a. 
BJOG 126:e1–e48. https:// doi. org/ 10. 1111/ 1471- 0528. 15306

 22. Bartels HC, Mulligan KM, Craven S et al (2021) Maternal morbidity in 
placenta accreta spectrum following introduction of a multi-disciplinary 
service compared to standard care: an Irish perspective. Ir J Med Sci 
190:1451–1457. https:// doi. org/ 10. 1007/ s11845- 020- 02473-3

https://doi.org/10.1155/2018/1507674
https://doi.org/10.1002/ijgo.12761
https://doi.org/10.1097/aog.0000000000002865
https://doi.org/10.1097/aog.0000000000002865
https://doi.org/10.1007/s00330-019-06617-7
https://doi.org/10.1002/uog.14952
https://doi.org/10.1002/uog.22183
https://doi.org/10.1080/14767058.2020.1716715
https://doi.org/10.1111/j.0001-6349.2005.00832.x
https://doi.org/10.1111/j.0001-6349.2005.00832.x
https://doi.org/10.1016/j.ajog.2018.03.013
https://doi.org/10.1016/j.ajog.2018.03.013
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1007/s00330-022-08821-410.1007/s00330-022-08821-4
https://doi.org/10.1002/jmri.26883
https://doi.org/10.1016/j.ejrad.2022.110497
https://doi.org/10.1038/s41379-020-0569-1
https://doi.org/10.1007/s00261-022-03673-4
https://doi.org/10.1007/s00261-022-03673-4
https://doi.org/10.1016/j.ajog.2019.02.054
https://doi.org/10.1186/s13244-020-00887-2
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1186/s12885-019-6504-5
https://doi.org/10.1111/1471-0528.15306
https://doi.org/10.1007/s11845-020-02473-3


Page 14 of 14Bartels et al. European Radiology Experimental            (2023) 7:54 

 23. Brennan DJ, Schulze B, Chetty N et al (2015) Surgical management of 
abnormally invasive placenta: a retrospective cohort study demonstrat-
ing the benefits of a standardized operative approach. Acta Obstet 
Gynecol Scand 94:1380–1386. https:// doi. org/ 10. 1111/ aogs. 12768

 24. Brown BP, Meyers ML (2020) Placental magnetic resonance imaging Part 
II: placenta accreta spectrum. Pediatr Radiol 50:275–284. https:// doi. org/ 
10. 1007/ s00247- 019- 04521-2

 25. Meyers ML, Brown BP (2020) Placental magnetic resonance imaging Part 
I: the normal placenta. Pediatr Radiol 50:264–274. https:// doi. org/ 10. 
1007/ s00247- 019- 04520-3

 26. Mulligan KM, Bartels HC, Armstrong F et al (2022) Comparing three-
dimensional models of placenta accreta spectrum with surgical findings. 
Int J Gynaecol Obstet 157:188–197. https:// doi. org/ 10. 1002/ ijgo. 13743

 27. Yip SS, Aerts HJ (2016) Applications and limitations of radiomics. Phys 
Med Biol 61:R150-166. https:// doi. org/ 10. 1088/ 0031- 9155/ 61/ 13/ r150

 28. Zhovannik I, Bussink J, Traverso A et al (2019) Learning from scanners: Bias 
reduction and feature correction in radiomics. Clin Transl Radiat Oncol 
19:33–38. https:// doi. org/ 10. 1016/j. ctro. 2019. 07. 003

 29. Hodges JL Jr, ELL, (1963) Estimates of location based on rank tests. Ann 
Math Statist 34(2):598–611

 30. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300

 31. Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The elements of 
statistical learning: data mining, inference, and prediction. Springer, New 
York, pp 1–758

 32. IT. J, (2002) Principal component analysis. Springer, New York
 33. Team RC (2022) R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing, Vienna, Austria. URL https:// 
www.R- proje ct. org/.

 34. (2022) KM. _caret: Classification and Regression Training_. R package ver-
sion 6.0–93, <https:// CRAN.R- proje ct. org/ packa ge= caret>.

 35. Xavier Robin NT, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M 
(2011) pROC: an open-source package for R and S+ to analyze and com-
pare ROC curves. BMC Bioinformatics 12:77

 36. SimkoTWaV (2021) R package ’corrplot’Visualization of a Correlation 
Matrix (Version 0.92)

 37. Wu Q, Yao K, Liu Z et al (2019) Radiomics analysis of placenta on T2WI 
facilitates prediction of postpartum haemorrhage: a multicentre study. 
EBioMedicine 50:355–365. https:// doi. org/ 10. 1016/j. ebiom. 2019. 11. 010

 38. McCall SJ, Deneux-Tharaux C, Sentilhes L et al (2022) Placenta accreta 
spectrum - variations in clinical practice and maternal morbidity between 
the UK and France: a population-based comparative study. BJOG 
129:1676–1685. https:// doi. org/ 10. 1111/ 1471- 0528. 17169

 39. Doctorvaladan SV, Jelks AT, Hsieh EW, Thurer RL, Zakowski MI, Lagrew DC 
(2017) Accuracy of blood loss measurement during cesarean delivery. 
AJP Rep 7:e93–e100. https:// doi. org/ 10. 1055/s- 0037- 16013 82

 40. Liu Y, Zhu W, Shen Y, Qiu J, Rao L, Li H (2021) Assessing the accuracy of 
visual blood loss estimation in postpartum hemorrhage in Shanghai 
hospitals: a web-based survey for nurses and midwives. J Clin Nurs 
30:3556–3562. https:// doi. org/ 10. 1111/ jocn. 15860

 41. Shamshirsaz AA, Fox KA, Salmanian B et al (2015) Maternal morbidity in 
patients with morbidly adherent placenta treated with and without a 
standardized multidisciplinary approach. Am J Obstet Gynecol 212:218.
e211-219. https:// doi. org/ 10. 1016/j. ajog. 2014. 08. 019

 42. Jauniaux E, Jurkovic D, Hussein AM, Burton GJ (2022) New insights into 
the etiopathology of placenta accreta spectrum. Am J Obstet Gynecol 
227:384–391. https:// doi. org/ 10. 1016/j. ajog. 2022. 02. 038

 43. Bourgioti C, Konstantinidou AE, Zafeiropoulou K et al (2021) Intraplacen-
tal fetal vessel diameter may help predict for placental invasiveness in 
pregnant women at high risk for placenta accreta spectrum disorders. 
Radiology 298:403–412. https:// doi. org/ 10. 1148/ radiol. 20202 00273

 44. Moradmand H, Aghamiri SMR, Ghaderi R (2020) Impact of image 
preprocessing methods on reproducibility of radiomic features in mul-
timodal magnetic resonance imaging in glioblastoma. J Appl Clin Med 
Phys 21:179–190. https:// doi. org/ 10. 1002/ acm2. 12795

 45. Chu C, Liu M, Zhang Y et al (2022) MRI-based radiomics analysis for intra-
operative risk assessment in gravid patients at high risk with placenta 
accreta spectrum. Diagnostics (Basel) 12(2):485. https:// doi. org/ 10. 3390/ 
diagn ostic s1202 0485

 46. Romeo V, Ricciardi C, Cuocolo R et al (2019) Machine learning analysis 
of MRI-derived texture features to predict placenta accreta spectrum in 

patients with placenta previa. Magn Reson Imaging 64:71–76. https:// doi. 
org/ 10. 1016/j. mri. 2019. 05. 017

 47. Demircioğlu A (2022) The effect of preprocessing filters on predictive 
performance in radiomics. Eur Radiol Exp 6:40. https:// doi. org/ 10. 1186/ 
s41747- 022- 00294-w

 48. Teng X, Zhang J, Zwanenburg A et al (2022) Building reliable radiomic 
models using image perturbation. Sci Rep 12:10035. https:// doi. org/ 10. 
1038/ s41598- 022- 14178-x

 49. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker 
standardization initiative: standardized quantitative radiomics for high-
throughput image-based phenotyping. Radiology 295:328–338. https:// 
doi. org/ 10. 1148/ radiol. 20201 91145

 50. Jauniaux E, Chantraine F, Silver RM, Langhoff-Roos J (2018) FIGO consen-
sus guidelines on placenta accreta spectrum disorders: epidemiology. Int 
J Gynaecol Obstet 140:265–273. https:// doi. org/ 10. 1002/ ijgo. 12407

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1111/aogs.12768
https://doi.org/10.1007/s00247-019-04521-2
https://doi.org/10.1007/s00247-019-04521-2
https://doi.org/10.1007/s00247-019-04520-3
https://doi.org/10.1007/s00247-019-04520-3
https://doi.org/10.1002/ijgo.13743
https://doi.org/10.1088/0031-9155/61/13/r150
https://doi.org/10.1016/j.ctro.2019.07.003
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=caret
https://doi.org/10.1016/j.ebiom.2019.11.010
https://doi.org/10.1111/1471-0528.17169
https://doi.org/10.1055/s-0037-1601382
https://doi.org/10.1111/jocn.15860
https://doi.org/10.1016/j.ajog.2014.08.019
https://doi.org/10.1016/j.ajog.2022.02.038
https://doi.org/10.1148/radiol.2020200273
https://doi.org/10.1002/acm2.12795
https://doi.org/10.3390/diagnostics12020485
https://doi.org/10.3390/diagnostics12020485
https://doi.org/10.1016/j.mri.2019.05.017
https://doi.org/10.1016/j.mri.2019.05.017
https://doi.org/10.1186/s41747-022-00294-w
https://doi.org/10.1186/s41747-022-00294-w
https://doi.org/10.1038/s41598-022-14178-x
https://doi.org/10.1038/s41598-022-14178-x
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1002/ijgo.12407

	Radiomics-based prediction of FIGO grade for placenta accreta spectrum
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 
	Relevance statement 
	Key points 

	Background
	Methods
	Study population
	PAS multidisciplinary team management
	MRI protocol
	Radiomics processing
	Image segmentation
	Feature extraction
	Feature selection
	Predictive modelling
	Statistical software

	Results
	Univariate analyses
	Multivariate predictive modelling

	Discussion
	Anchor 24
	References


