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Abstract 

Background  Early diagnosis of the potentially fatal but curable chronic pulmonary embolism (CPE) is challenging. 
We have developed and investigated a novel convolutional neural network (CNN) model to recognise CPE from CT 
pulmonary angiograms (CTPA) based on the general vascular morphology in two-dimensional (2D) maximum inten-
sity projection images.

Methods  A CNN model was trained on a curated subset of a public pulmonary embolism CT dataset (RSPECT) with 
755 CTPA studies, including patient-level labels of CPE, acute pulmonary embolism (APE), or no pulmonary embolism. 
CPE patients with right-to-left-ventricular ratio (RV/LV) < 1 and APE patients with RV/LV ≥ 1 were excluded from the 
training. Additional CNN model selection and testing were done on local data with 78 patients without the RV/LV-
based exclusion. We calculated area under the receiver operating characteristic curves (AUC) and balanced accuracies 
to evaluate the CNN performance.

Results  We achieved a very high CPE versus no-CPE classification AUC 0.94 and balanced accuracy 0.89 on the local 
dataset using an ensemble model and considering CPE to be present in either one or both lungs.

Conclusions  We propose a novel CNN model with excellent predictive accuracy to differentiate chronic pulmonary 
embolism with RV/LV ≥ 1 from acute pulmonary embolism and non-embolic cases from 2D maximum intensity pro-
jection reconstructions of CTPA.

Relevance statement  A DL CNN model identifies chronic pulmonary embolism from CTA with an excellent 
predictive accuracy.

Key points  • Automatic recognition of CPE from computed tomography pulmonary angiography was developed.

• Deep learning was applied on two-dimensional maximum intensity projection images.

• A large public dataset was used for training the deep learning model.

• The proposed model showed an excellent predictive accuracy.

Keywords  Artificial intelligence, Computed tomography angiography, Deep learning, Neural networks (computer), 
Pulmonary embolism

*Correspondence:
Tuomas Vainio
tuomas.j.vainio@helsinki.fi; tuomas.vainio@hus.fi
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41747-023-00346-9&domain=pdf
http://orcid.org/0000-0002-3098-0084
http://orcid.org/0000-0003-3777-5283
http://orcid.org/0000-0002-7306-7172
http://orcid.org/0000-0001-8085-322X
http://orcid.org/0000-0001-7501-3373


Page 2 of 13Vainio et al. European Radiology Experimental            (2023) 7:33 

Graphical Abstract

Background
Chronic pulmonary thromboembolism (CPE) is the 
only cause of pulmonary hypertension potentially cur-
able by pulmonary endarterectomy, but the prognosis is 
poor if left untreated [1–3]. Additionally, longer delays 
in chronic thromboembolic pulmonary hypertension 
(CTEPH) diagnosis are associated with a higher risk of 
all-cause mortality [4]. However, early diagnosis is chal-
lenging, and the radiologic signs of CTEPH are often 
missed in computed tomography pulmonary angiog-
raphy (CTPA) [5]. An automated classification tool 
could aid the radiologist in early detection and improve 
patient selection in clinical practice.

The CPE diagnosis is not based solely on thrombus or 
hypoperfusion detection but on many different radiologi-
cal signs, including calibre variation and abrupt narrow-
ing of pulmonary vessels, narrowing of distal vessels, and 
proximal artery tortuosity and dilatation [6–10].

Hence, we aimed to develop an alternative to our 
previous machine learning model on hypoperfusion 
detection [11] and evaluate its feasibility in classifying 

CPE from CTPA based on the overall morphology of 
pulmonary vasculature instead of manually handcraft-
ing vascular features into robust descriptors. Auto-
matic lung segmentation and two-dimensional (2D) 
maximum intensity projection (MIP) images from 
various angles of the CTPA were used as model inputs 
and the CPE diagnoses as the training and testing tar-
gets. In addition, we investigated which regions in the 
CTPA could be associated with the classification deci-
sion. This is the first study recognising chronic pulmo-
nary embolism from 2D MIP images of a CTPA by a 
deep learning method.

Methods
Public dataset
For the initial training and selection of the convolutional 
neural network (CNN) model, we utilised the RSNA-STR 
Pulmonary Embolism CT (RSPECT) dataset from the 
Radiological Society of North America (RSNA), originally 
consisting of 12,195 CTPA studies, of which a subset was 
released for RSNA Pulmonary Embolism Detection AI 
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Challenge 2020 [12]. Among other labels, diagnosis of 
acute or chronic PE was made publicly available for 7,279 
CTPA studies. The available data was further rectified to 
unify the final training data by minimising the number 
of possible confounding factors and improving the class 
balance.

The exclusion process is described in Fig.  1, and full 
details of the RSPECT dataset are available [12]. We per-
formed two initial experiments, hereafter referred to as 
experiments A and B, on the RSPECT data and chose the 
best-performing approach for ensemble model training 
and final testing on a local data set.

The data in experiment A consisted of training a neu-
ral network classifier aiming to distinguish patients 
with chronic PE and having a right-to-left-ventricular 
ratio (RV/LV) ≥ 1 (positive class) from a negative class 
comprised of both negative exams for PE and patients 
reported with acute PE with RV/LV < 1. We hypothesised 
that patients in the former category would demonstrate 
more features of CPE in their vascular morphology due 
to more advanced disease and elevated pulmonary hyper-
tension. The RV/LV criterion on the latter category was 

applied to minimise the possibility of pulmonary hyper-
tension and underlying misdiagnosed CPE in the control 
groups. The RV/LV ratio was unavailable for the negative 
for PE exams and was not used as an exclusion criterion. 
In experiment B, we retrained the same classifier without 
the RV/LV criteria.

Local dataset
The local dataset was constructed from the hospital 
district picture archiving and information system by 
retrospectively reviewing reports of ventilation-perfu-
sion (V/Q) scans performed between January 2017 and 
December 2019 and CTPA studies between July 2019 and 
October 2019 in Helsinki University Hospital. Based on 
the reports, we initially selected 30 patients with findings 
suggestive of CPE and 32 patients with no signs of pul-
monary embolism in the V/Q scan for the study. Addi-
tionally, 34 patients with acute pulmonary embolism in 
the CTPA were initially selected.

The inclusion criteria for the positive CPE cases were 
a positive V/Q scan for CPE and a CTPA with signs of 
CPE performed in our hospital district within 3 months 

Fig. 1  A flow chart of the data selection process for the public dataset. Dashed arrows indicate exam exclusions without overlap with previous 
exclusions. PE, Pulmonary embolism; RV/LV, Right ventricular to left ventricular diameter ratio; QA, Quality assurance
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before or after the positive V/Q scan without signs of 
acute pulmonary embolism before treatment. The neg-
ative patients’ inclusion criteria were a negative V/Q 
scan for acute or chronic pulmonary embolism and a 
negative CTPA for acute or chronic pulmonary embo-
lism performed within 3  months of the negative V/Q 
scan. The inclusion criteria for the patients with acute 
pulmonary embolism were a positive CTPA study for 
acute pulmonary embolism without signs of CPE and 
no CPE diagnosis or death within 2 years after the ini-
tial CTPA for APE to exclude possibly misdiagnosed 
CPE. CTPA studies with radiological signs of a paren-
chymal disease unrelated to CPE (e.g.,  hyper-attenu-
ation caused by talcosis) extending over two-thirds of 
the lung volume were excluded. In addition, artefacts 
caused by foreign material covering more than one-
third of the lung volume in the CTPA were a criterion 
for exclusion.

After the exclusion, CTPA studies of 26 CPE, 26 nega-
tive, and 26 APE cases were included for CNN valida-
tion and testing. Patient characteristics are presented 
in Table 1. The acquisition and contrast media protocol 
were defined by the joint municipal authority for special-
ised healthcare but might have varied depending on the 

patient’s age, size, and renal function. Different tube volt-
ages were used depending on the scanner and the size of 
the patient (Table 2).

Dataset splits
The CNN training and testing were divided into three 
phases with the following data splits (Fig.  2). Test sets 
were separated from the training set, with the patient’s 
left and right lungs always belonging to the same set. 
Phase 1 consisted of hyperparameter optimisation and 
model selection using fivefold cross-validation with 
separate sets for selecting the best-performing model 
checkpoint (hereafter referred to as “early stopping sets” 
to distinguish from the validation sets in the cross-val-
idation and because they are analogous to stopping the 
training to prevent overfitting). In experiment A, the 
training set consisted of 86 CPE, 97 APE, and 338 nega-
tive-for-PE exams (multiply by two to count left and right 
lung volumes separately), the early stopping set of 14, 16, 
and 50 exams, and the test set of 23, 31, and 100 exams, 
respectively. In experiment B, the training set consisted 
of 169 CPE, 169 APE, and 338 negative exams for PE, the 
early stopping set of 25, 25, and 50 exams, and the test set 
of 50, 50, and 100 exams, respectively. In experiment B, 

Table 1  Local dataset patient characteristics

APE Acute pulmonary embolism, CPE Chronic pulmonary embolism, CTED Chronic thromboembolic disease, CTEPH Chronic thromboembolic pulmonary 
hypertension, RV/LV Right ventricular to left ventricular diameter ratio, PE Pulmonary embolism

Patient group Median age (min–
max)

Female Male CTEPH CTED RV/LV ≥ 1 RV/LV < 1

CPE 66 (21–82) 17 9 19 7 24 2

Negative for PE 67 (33–88) 14 12 0 0 16 10

APE 63 (32–90) 16 10 0 0 7 19

All 65 (21–90) 47 31 19 7 47 31

Table 2  Number of patients imaged with each computed tomography scanner model and tube voltage. The patients were imaged in 
nine different hospitals

Scanner model (manufacturer) X-ray tube voltage Total

80 kVp 100 kVp 120 kVp 140 kVp

Aquilon Prime (Toshiba) 0 1 0 0 1

Discovery HD (General Electric Healthcare) 0 4 0 0 4

LightSpeed VCT (General Electric Healthcare) 0 9 1 0 10

Revolution EVO (General Electric Healthcare) 0 6 2 0 8

Revolution HD (General Electric Healthcare) 1 5 0 1 7

SOMATOM Definition AS (Siemens Healthineers) 0 2 2 0 4

SOMATOM Definition Edge (Siemens Healthineers) 3 25 5 0 33

SOMATOM Definition Flash (Siemens Healthineers) 0 9 2 0 11

Total 4 61 12 1 78
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the cross-validation performance for both A and B vali-
dation sets was recorded.

In phase 2, the best-performing network was retrained 
on the entire experiment A training and early stopping 
sets, i.e., without cross-validation and using the same 
cases for model selection. We tested this model against 
experiment A and B test sets and the local test set con-
sisting of 21 CPE, 21 APE, and 21 negative exams for 
PE. In phase 3, we utilised a tiny “local early stopping 
set” (5 CPE, 5 APE, and 5 negative-for-PE CTPA exams 
not included in the test set) to select the optimal epoch 
from the phase 2 training. We evaluated the local test 
set using this “locally optimal” model. Apart from the 
model selection, local data was not used in the model 
training.

Data preprocessing
We converted CTPA volumes to NIfTI file format using 
dcm2niix version 1.0.20201102 [13]. Using MIP requires 
the removal of the surrounding high-intensity struc-
tures, which was achieved by the deep learning-based 
lung segmentation tool lung mask 0.2.8 by Hofman-
ninger et  al. [14]. This removed the tissues beyond the 
lungs, e.g., bones, mediastinum, trachea, main bronchi, 
heart, great vessels, and hila, leaving only the separate 
left and right lungs with the smaller vessels and bron-
chi. Masked MIP image appearance was fixed by a radi-
ologist manually choosing optimal colour and opacity 
transfer functions based on 30 randomly selected CTPA 

studies of the RSPECT dataset. This adjustment and 
the following visual inspections were performed on the 
image processing platform 3D Slicer 4.11 [15]. We con-
sidered the values optimal when both the small periph-
eral and larger proximal vessels delineated well with the 
least amount of noise from the lung parenchyma in most 
images.

The same transfer functions were used on every 
masked CTPA volume to generate MIP lung images auto-
matically. MIPs were generated at 11 different angles, 
rotating the view 150° in 30-degree increments around 
the vertical and left-to-right-horizontal axis starting from 
the anteroposterior view (Fig. 3). The MIPs were gener-
ated online during CNN training and inference using 
Python 3.8.8 and Visualization Toolkit 9.0 [16] packaged 
in the data analysis and visualisation application Para-
View 5.9.1 [17].

ParaView headless server distribution provided pre-
built libraries allowing easy graphics card utilisation in 
fast off-screen MIP image rendering. In addition to the 
typical augmentation by rotating the final projections 
(hereafter referred to as 2D rotations), the online MIP 
generation allowed altering the projection direction — 
three-dimensional (3D) rotations — during training. 
MIP images were then normalised to 0–1 range. Miscel-
laneous image processing and analysis tasks (e.g., image 
sorting, quality checks, and statistical analysis) were 
performed on MATLAB 2018b (MathWorks, Natick, 
MA, USA). In the final testing, all processing steps 

Fig. 2  Data splits in phases 1–3. The block widths correspond approximately to the relative number of cases in the experiment A and the local sets. 
These test sets are not to be confused with the private and public test sets in the original RSPECT dataset (see text for details), for which we did not 
have ground truths available. Experiment A sets or splits were subsets of the corresponding sets or splits in experiment B
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(conversion, segmentation, MIP rendering, and predic-
tion) were run consecutively without a need for user 
intervention facilitating easy automation.

Neural network training and visualisation
Model architecture selection and hyperparameter 
optimisation were performed in phase 1 using fivefold 

Fig. 3  The neural network architecture with DenseNet-121 as the frozen base model. Individual feature vectors were averaged and fed to the 
three-layer classification network. Lungs were processed separately, and the outputs were either taken individually or combined by taking the 
maximum of the positive class. Note that only the parameters trained by gradient descent were frozen in the base model, i.e., the batch statistics 
(the running mean and variance in the batch normalisation layers in the base model) were calculated during fine-tuning. PE, Pulmonary embolism



Page 7 of 13Vainio et al. European Radiology Experimental            (2023) 7:33 	

cross-validation with a separate early stopping set. We 
utilised transfer learning to extract feature vectors, 
which were fed to a multilayer perceptron classifier 
outputting probability for CPE. RSPECT dataset labels 
(diagnoses) were used as the training targets. The cho-
sen general architecture and training parameters were 
the following. Each of the eleven MIP input images was 
first separately fed to a frozen “base model” trained 
on ImageNet [18] with the original classification layer 
removed. The eleven feature vectors were then aver-
aged and fed to an unfrozen three-layer multilayer 
perceptron with rectified linear unit activations fol-
lowed by Alpha Dropout [19] and batch normalisations 
(Fig. 3).

The network produced predictions for the presence/
absence of CPE for both lungs separately. We assume 
that vascular changes can be present in either or both 
lungs and therefore use the maximum of the left and 
right lung CPE prediction (LRmax) as a more accurate 
indicator of the disease than individual lung predictions. 
However, the left and right lungs were used as independ-
ent inputs with the same label (CPE or no CPE) during 
training. Every pair of left and right lungs belonged only 
to one data set at a time, and the volume order during 
training was randomised. Model checkpoints were saved 
after each epoch to facilitate retrospective optimal model 
selection (e.g., by using local data). We used multiple 
models to estimate the variation and, more importantly, 
to compose an ensemble model by averaging the five out-
puts after softmax activation.

We created localised 3D visualisations for the CPE 
classification to evaluate the network decision biases, to 
understand the reasons for possible false-positive and 
false-negative findings, and to guide the possible future 
development of the methodology. Instead of a more 

traditional occlusion approach, we chose an 80 × 80 × 80 
mm3 patch from the CTPA volume and set all the voxels 
outside the patch to -1,024 HU. This was then used as 
an input to the final ensemble model, and the predic-
tion probabilities were recorded. The patch location 
was then varied until the whole volume was covered. 
The predictions were saved to the patch locations (tak-
ing the maximum of any overlap) providing rough 3D 
localisation in the same coordinate space as the original 
CTPA.

As a final network dissection method, we rerun the 
final ensemble model predictions on the local test set 
volumes after the intensities below -500 HU had been 
set to -1,024 HU. This was done to test if parenchymal 
hypoperfusion, expected to manifest below this thresh-
old, would be a major factor in the CPE detection instead 
of the assumed vasculature changes.

Performance metrics
Receiver operating characteristics (ROC) area under the 
curve (AUC) was used to compare overall model perfor-
mances agnostic to the operating point selection. Addi-
tionally, we used balanced accuracy (BAcc), defined as 
the average of sensitivity and specificity, instead of nor-
mal accuracy to facilitate more straightforward interpret-
ability than AUC and better comparability between sets 
with varying class balances. Ad hoc balanced accuracy 
was calculated by choosing the operating point based on 
the early stopping set and post hoc BAcc by choosing the 
optimal operating point from the corresponding test set. 
The prediction threshold that minimises the distance to 
the top-left corner of the ROC curve was considered opti-
mal. Ad hoc BAcc was defined without prior knowledge 
of the test set, whereas post hoc BAcc should be regarded 
only as a summary of the test set.

Table 3  Performance metrics of the network trained five times on the experiment A data

The operating points for the test set balanced accuracy calculations were chosen by selecting the threshold nearest to the top-left corner of the receiver operator 
characteristic curve calculated from the early stopping set (a) or from the final test set (b). AUC​ Area under the receiver operator characteristic curve, BAcc Balanced 
accuracy, LRmax Maximum of the left and right lung prediction, SD Standard deviation

Base model DenseNet-121

Augmentations 3° rotations in-plane, 10° rotations in 3D

Set and model Test set from experiment A
Single model (mean ± SD)

Test set from experiment A
Ensemble model

Test set from experiment 
B, Single model 
(mean ± SD)

AUC, all 0.80 ± 0.02 0.80 0.63 ± 0.01

BAcc (ad hoc), alla 0.71 ± 0.02 0.74 0.60 ± 0.01

BAcc (post hoc), allb 0.73 ± 0.02 0.75 0.61 ± 0.01

AUC, LRmax 0.79 ± 0.02 0.80 0.63 ± 0.01

BAcc (ad hoc), LRmax
a 0.70 ± 0.02 0.71 0.60 ± 0.01

BAcc (post hoc), LRmax
b 0.73 ± 0.01 0.73 0.62 ± 0.02
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Results
Model selection and performance
According to the cross-validation in experiment A (phase 
1), the best-performing base model was DenseNet-121 

with random ± 3-degree 2D rotations resulting in 0.70 
AUC (Supplemental Table S1). Utilising 3D rotations, a 
slight 0.02 increase in the average AUC was observed. 
We used these settings in the rest of the experiments/

Table 4  Performance metrics on the local test data using early stopping from RSPECT (experiment A) or from a small sample of 15 
CTPA exams (local data)

The operating points for the test set balanced accuracy calculations were chosen by selecting the threshold nearest to the top-left corner of the receiver operator 
characteristic curve calculated from the early stopping set (a) or from the final test set (b). AUC​ Area under the receiver operator characteristic curve, BAcc Balanced 
accuracy, LRmax Maximum of the left and right lung prediction, SD Standard deviation

Early stopping set Experiment A early stopping Local data early stopping

Single model (mean ± SD) Single model (mean ± SD) Ensemble 
model

AUC, all 0.82 ± 0.01 0.86 ± 0.04 0.89

BAcc (ad hoc), alla 0.69 ± 0.04 0.74 ± 0.07 0.75

BAcc (post hoc), allb 0.76 ± 0.02 0.81 ± 0.03 0.82

AUC, LRmax 0.87 ± 0.01 0.89 ± 0.04 0.94

BAcc (ad hoc), LRmax
a 0.67 ± 0.06 0.76 ± 0.07 0.87

BAcc (post hoc), LRmax
b 0.82 ± 0.02 0.83 ± 0.05 0.89

Fig. 4  ROC curves of the final individual (light grey) and ensemble models (black). LRmax is calculated by taking the maximum of exam’s left and 
right lung chronic pulmonary embolism predictions, whereas all is calculated by treating each lung separately. AUC​, Area under the curve; LRmax, 
Maximum of the left and right lung prediction; ROC, Receiver operator characteristic
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evaluations. Experiment B, in which the training used 
more CTPA volumes but without the RV/LV-based 
exclusion, showed a somewhat poorer performance (0.68 
AUC) on the experiment A cross-validation sets. The 
experiment B cross-validation AUC of 0.60 indicated that 
no meaningful learning was achieved for this population. 
This discrepancy may suggest that the possible vascula-
ture changes are more distinct when RV/LV ≥ 1.

Model performance on the stratified RSPECT test sets is 
summarised in Table 3. Experiment A test AUC was higher 
than the cross-validation average, potentially indicating that 
the randomly selected test set might not fully represent the 
study population. A small difference was observed when using 
the ensemble model: a slight improvement was seen in the 
post hoc BAcc from 0.73 to 0.75, and no improvement was 
seen for the AUC. LRmax had poorer performance than treat-
ing the lungs individually. We verified that the phase 2 final 
model did not perform well on test set B (0.63 AUC), i.e., una-
ble to detect cases without the prior RV/LV-based selection.

We achieved notably better test performance for the 
local dataset than the RSPECT set (experiment A column 
in Table 4), e.g., the average AUC LRmax were 0.87 and 0.79, 
respectively. In phase 3, we used a small local dataset of 
15 CTPA volumes for the (“early stopping”) model selec-
tion. Using the original training runs was possible because 
the model checkpoints had been saved for all 30 epochs 
for all five runs. With a locally optimal ensemble model 
and considering CPE to be present in either one or both 
lungs, we achieved a very high AUC of 0.94 and BAcc of 
0.89. Although model selection using the tiny local early 

stopping set outperformed the potentially noisier public 
dataset, it was found that operating point selection was 
suboptimal (see ad hoc operating point for the ensemble 
model for individual lungs (cross for “all” curve) in Fig. 4).

Using the post hoc operating point in the local test set, 
all but one CPE were identified correctly. Three patients 
in the negative exam for the PE group and four in the 
APE group were misclassified as false negatives. Of the 
20 true positives, 19 had RV/LV ≥ 1, and the one false 
positive had RV/LV ≥ 1. Fifteen of the 35 true negatives 
and 4 of the 7 false positives had RV/LV ≥ 1.

Decision visualisations and analysis
In addition to the patient-level performance evaluation, 
we reviewed the local test set CTPA images, visually ana-
lysing the areas where the algorithm showed the highest 
activation. The network visualisation was based on pre-
dicting patches of the original volume as described in 
“Methods”. For the visual analysis, a probability threshold 
of 0.80 was selected for the activation maps, which cor-
responded to the optimal threshold for ROC curves using 
the maximum of each lung’s patch predictions.

In the CPE group, 13 patients had a disparity in ves-
sel size. Twelve patients had abnormally narrow pulmo-
nary segmental or subsegmental vessels in the activation 
area (see Fig.  5a), and eight patients had a reduction in 
the number of distal vessels. Six patients had pulmonary 
artery calibre variation, and four had abrupt narrowing of 
the vessels (see Fig.  5b). Six patients had tortuous arter-
ies (Fig. 6), and four had dilatation of pulmonary arteries. 

Fig. 5  Examples of the CNN prediction visualisations are shown in yellow for two true positive cases. Segmental and subsegmental arteries of the 
upper lobes are reduced in diameter and are smaller than the accompanying bronchi (arrows in (a)). Abrupt narrowing of the left superior lingular 
artery (arrow in (b)) and reduction of pulmonary artery diameter (arrowheads in (b)) are seen as signs of chronic pulmonary embolism
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No apparent CPE-related morphological vascular signs 
could be found in the activation area in two patients. Two 
patients had chronic web-like and wall-adherent emboli in 
the activation area, and one had a lung infarction. In addi-
tion, streak artefacts from the contrast material bolus in 
the upper vena cava were seen in the activation area of two 
patients.

Five true positives with no activation over the prob-
ability threshold of 0.80 in the CNN predictions from the 
fixed-sized patches were left out of the decision visualisa-
tion and analysis. No evident artefacts or other apparent 
reasons were found in the general analysis of the CTPA 
of the one false-negative case.

Two false positives had a strong contrast material bolus in 
the upper vena cava with streak artefacts in the activation 
areas. One false positive had two proximal acute embolisms, 
and the distal branches of these arteries were in the activa-
tion area. However, there was no embolism in the activation 
area, and the distal arteries were of normal calibre.

Four false positives did not have any activation over 
the probability threshold of 0.80 in the CNN predictions 
from the fixed-sized patches. However, the CTPA images 
of these patients were analysed in general to evaluate the 
possible reasons for the false-positive findings.

One of the false positives had a weak concentration of 
contrast material in the pulmonary arteries, and most of 
the contrast was already in the systemic arteries. Another 
false positive had many linear atelectases in the right 
lower lobe related to unilateral pleural effusion. One had 
an extensive acute embolism affecting all the segmental 
branches with perfusion defects in the parenchyma. The 

last false positive had tortuosity and compression of the 
pulmonary vessels caused by a mass effect from a sizeable 
necrotic infiltration relating to a chronic infection in the 
right middle lobe.

We performed the final analysis on the local test set by 
first thresholding the CTPAs so that all the voxels with 
intensities below -500 HU were set to -1,024 HU and 
effectively masked out. This removed the normal paren-
chyma beyond the vessels and resulted in 0.87 AUC all 
and 0.89 AUC LRmax using the final ensemble model opti-
mised for the local data. Although a performance hit can 
be seen, probably because of an altered image appearance 
or because part of the information on the vessels was also 
lost, the classification AUC remained high even without 
retraining the model.

Discussion
We developed and evaluated a novel CNN algorithm, 
which analyses the morphology of the pulmonary vascu-
lature in 2D rotational MIP images created from CTPA 
data and identifies whether the subject has a chronic pul-
monary embolism. Although MIP images have been used 
for CNN training on different modalities in recent stud-
ies [20–23], this is the first study on a CNN technique 
for CPE recognition from MIP images of the pulmonary 
vasculature. The smallest vessels are better delineated and 
more accessible to the human eye than in 2D slices. We 
hypothesised that we could direct the CNN focus on ana-
lysing the vessels instead of parenchymal markings or the 
airways. Also, in the presented model, the feature vectors 
were combined by element-wise averaging, suggesting a 

Fig. 6  An example of tortuous course vessels in the left lung of a chronic pulmonary embolism patient shown in coronal (a) and MIP images (b). 
The right lung is hidden in b 
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straightforward and efficient way of capturing information 
from multiple angles (images). MIP was chosen to produce 
consistent and robust results; although it required extract-
ing the lungs from the CTPA volumes, it did not require 
the more challenging task of vessel segmentation or other 
image rendering operations. The algorithm showed a good 
performance in the classification of CPE with 0.94 AUC 
and 0.89 BAcc, despite the varied quality of the CTPA in 
the dataset used for the CNN training.

The AI tool with fast processing could be used as a sec-
ond reader tool to suggest the presence of chronic pul-
monary embolism after the read, as radiologic signs of 
CTEPH are often missed in CTPA and poorly reported 
or misclassified as acute PE in daily practice [5, 24]. This 
might improve the early diagnosis, which is challenging 
and often delayed, with a median of 14 months after the 
first symptoms [3]. Further studies are needed to test the 
CNN performance in clinical settings. Furthermore, by 
matching CNN findings with specific changes in the vas-
culature morphology, novel disease features could possi-
bly be identified.

The vascular remodelling and chronic obstruction 
in CPE may lead to pulmonary hypertension and right 
heart strain [25]. Since we had no clinical data available 
in the RSPECT dataset, we predicted that patients with 
RV/LV ≥ 1 would have more advanced disease and pre-
sent with more abundant vascular characteristics of CPE. 
This hypothesis was tested by training the CNN with and 
without an RV/LV-based exclusion criterion. The first 
experiment with the RVLV-based exclusion criteria per-
formed better in the public dataset. Although the sample 
size in the second experiment without the exclusion was 
almost double in size compared to the first, this may indi-
cate that the CPE vascular characteristics are more dis-
tinct in patients with right heart strain.

All but one of the CPE patients were correctly classi-
fied by the CNN with the optimal operating point chosen 
post hoc, with seven false positives in the control groups. 
One false positive had very weak contrast opacification 
in the pulmonary arteries, and the correct timing of the 
contrast injection might be necessary for optimal results 
in the CNN prediction. Also, streak artefacts relating to 
the contrast bolus might harm the CNN predictions, as 
these were seen in two false-positive predictions shading 
the small vessels in apices of the lungs. In addition, path-
ological processes, e.g., tumours or infectious masses, 
which alter the course and calibre of the pulmonary ves-
sels might impair the CNN analysis, as was seen in one 
false-positive case.

Because of the mosaic perfusion seen in CPE patients, 
we did an additional test masking the lung paren-
chyma out of the CTPA, which showed only a slight 
performance impairment, and the predictive accuracy 

remained high with an AUC of 0.89. We conclude that 
low-density parenchymal changes have little effect on the 
model performance, but the true significance requires 
further studies.

This study has some limitations. The use of MIP images 
limits our CNN analysis only to vascular changes, which 
are shown to differ significantly, at least in CTEPH, com-
pared to controls [26]. However, the radiological diag-
nosis also depends on other imaging features, such as 
parenchymal changes or alterations in the heart. Hence, 
our proposed model might benefit from integrating 
a CNN algorithm analysing other features in CTPA. 
Another limitation regarding MIP images is that calcified 
vessels cannot be accurately evaluated due to the averag-
ing of plaque opacification, and the presence of motion 
or streak artefacts may mimic abnormalities, which 
might impair the CNN predictions.

Also, the vessel delineation in MIP images could have 
been more precise by individually adjusting each study’s 
settings for the window, level, and opacity values. How-
ever, we wanted to create an automatic tool with no 
human interaction, and the simplest solution for auto-
matic MIP image creation was using universal settings. 
Full vasculature segmentation could allow exploring 3D 
rendering methods with our technique.

Our study had a small sample size partly due to the rarity 
of the CPE [27]. Therefore, we cannot demonstrate the abil-
ity of the CNN to distinguish chronic pulmonary embolism 
from pulmonary hypertension caused by other aetiologies, 
which might feature similar vascular characteristics.

Also, relating to the small sample size, we only had two 
CPE cases in our dataset with RV/LV < 1, of which only 
one had been randomly selected for the test set. Hence, 
the preliminary results of our study might only be appli-
cable to CPE patients with RV/LV ≥ 1, especially when 
considering the RV/LV-based exclusion criteria used for 
the CNN’s training in the public dataset.

Finally, in this retrospective study, we were not able 
to access all the parameters used for the CT acquisition 
and contrast media protocols, which may have impacted 
the image quality and CNN performance. Testing our 
model on other CPE datasets, CT scanners and facilities 
are warranted, as well as a further investigation with pro-
spectively acquired images to validate our results.

In conclusion, we developed a novel deep learning 
model recognising CPE on CTPA images. With excellent 
predictive accuracy, the proposed model can differentiate 
chronic pulmonary embolism with RV/LV ≥ 1 from acute 
pulmonary embolism or non-embolic cases.
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