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Abstract 

Background Artificial intelligence (AI)‑powered, robot‑assisted, and ultrasound (US)‑guided interventional radiology 
has the potential to increase the efficacy and cost‑efficiency of interventional procedures while improving postsurgi‑
cal outcomes and reducing the burden for medical personnel.

Methods To overcome the lack of available clinical data needed to train state‑of‑the‑art AI models, we propose a 
novel approach for generating synthetic ultrasound data from real, clinical preoperative three‑dimensional (3D) data 
of different imaging modalities. With the synthetic data, we trained a deep learning‑based detection algorithm for the 
localization of needle tip and target anatomy in US images. We validated our models on real, in vitro US data.

Results The resulting models generalize well to unseen synthetic data and experimental in vitro data making the 
proposed approach a promising method to create AI‑based models for applications of needle and target detection in 
minimally invasive US‑guided procedures. Moreover, we show that by one‑time calibration of the US and robot coor‑
dinate frames, our tracking algorithm can be used to accurately fine‑position the robot in reach of the target based 
on 2D US images alone.

Conclusions The proposed data generation approach is sufficient to bridge the simulation‑to‑real gap and has the 
potential to overcome data paucity challenges in interventional radiology. The proposed AI‑based detection algo‑
rithm shows very promising results in terms of accuracy and frame rate.

Relevance statement This approach can facilitate the development of next‑generation AI algorithms for patient 
anatomy detection and needle tracking in US and their application to robotics.

Key points  
• AI‑based methods show promise for needle and target detection in US‑guided interventions.

• Publicly available, annotated datasets for training AI models are limited.

• Synthetic, clinical‑like US data can be generated from magnetic resonance or computed tomography data.

• Models trained with synthetic US data generalize well to real in vitro US data.

• Target detection with an AI model can be used for fine positioning of the robot.
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Graphical Abstract

Background
Interventional radiology has been credited with a vari-
ety of benefits such as reduced recovery times, reduced 
rates and severity of post-surgical complications, higher 
patient acceptance rates, and higher cost efficiency [1]. 
Recently, robot-assisted, interventional radiology has 
been on the rise [2–4]. While many different devices for 
different applications exist [5], almost all robotic sys-
tems available for clinical use today are teleoperators or 
assistants for holding and aiming [6]. Developing sys-
tems that are able to operate at higher autonomy levels 
even in difficult conditions poses significant research 
challenges.

Of particular importance for such systems is the capa-
bility to continuously track the surgical tool and rel-
evant anatomy during the interventional procedure to 
handle organ movement and breathing. Due to its cost-
efficiency, portability, and absence of radiation damage 
concerns, ultrasound (US) is an ideal imaging modal-
ity for autonomous interventions performed by a robot. 
Compared to x-ray imaging, the US poses significant 
challenges for needle and anatomy detection due to its 
numerous image artifacts.

Several US image processing methods have been pro-
posed to improve needle visibility [7]. Some authors 
[8–10] used full or partial brightness of the needle in the 
US image to reconstruct its shape. Other authors [11] 
introduced a two-phase method based on a needle-spe-
cific multi-echo model, showing very good performance 
but lacking in generalizability. To address this, dynamic 
intensity changes arising from needle movement in the 
US image have been used [12, 13].

Recently, approaches based on convolutional neural 
networks have shown promise for needle detection in 
static three-dimensional (3D) [14–16] and two-dimen-
sional (2D) US data [17]. Some authors [18] intro-
duced detection transformers for object detection in 
US images achieving a higher frame rate compared to 
other state-of-the-art deep learning (DL)-based meth-
ods. A major obstacle to developing state-of-the-art 
AI-based models for analyzing interventional imaging 
data is the lack of annotated, clinical data for train-
ing and testing of the models. While some approaches 
have been proposed to address data paucity for diag-
nostic clinical US imaging with the help of generative 
adversarial networks [19] or through simulation [20], 
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to the best of our knowledge, no work has been pro-
posed so far for the generation of simulation-to-real 
(sim-to-real) capable training data from simulated US-
guided interventions.

We propose here a novel scheme to generate syn-
thetic training data for US-guided, needle-based inter-
ventions and validate our approach with in vitro data 
collected from a triple-modality abdominal phantom 
using the Micromate robot by iSYS Medizintechnik 
GmbH (Kitzbühel, Austria) [21] with a clinical US 
system. Our contributions are (i) the development 
of a simulation pipeline for generating synthetic US 
training data for needle interventions from preopera-
tive, annotated 3D imaging data of a different imag-
ing modality, i.e., magnetic resonance imaging (MRI) 
or computed tomography (CT)); (ii) the adaptation of 
a state-of-the-art DL-based tracking algorithm for US 
data; (iii) its training and testing with synthetic US data 
and its deployment on unseen in vitro data; and (iv) the 
illustration of a “robot in reach of target” method for 
fine positioning of the robot prior to needle insertion 
based on 2D US images alone.

Methods
We present a framework for synthetic US data gen-
eration based on available annotated CT and MRI 
datasets for the training and validation of a DL-based 
needle and lesion-tracking algorithm for use in medi-
cal robotics. The annotations consist of 3D target 
boundary masks and type information (i.e., organs 
or lesions). Slices of CT/MRI annotated images are 

combined with artificial needle geometries to gen-
erate 2D images for the US simulator. The generated 
US images are used for the training and validation of 
the proposed needle and target tracking algorithm. 
We validated the model with two in vitro datasets and 
show that it can be used to accurately maneuver the 
robot to the desired body location.

Experimental setup
The interventional robotic system adopted in this paper 
is illustrated in Fig. 1a. The US scanner Clarius C3 (Clar-
ius Mobile Health, Vancouver, Canada) [22] is mounted 
directly on the iSYS Micromate™ robotic platform (iSYS 
Medizintechnik GmbH, Kitzbühel, Austria) such that 
its field of view can be controlled with the robot. The 
setup includes lateral mounting possibilities for needles 
with options for five different insertion angles, all copla-
nar with the imaging plane. The initial positioning of the 
robot is performed by hand. Then, fine positioning of the 
US scanner is realized using the robotic stage (4 degrees 
of freedom). We provide a detailed description of the 
experimental setup depicted in Fig. 1b.

Ultrasound scanner
Because of its high resolution and availability of raw 
data, we selected the wireless C3 scanner (Clarius 
Mobile Health, Vancouver, Canada), which has 192 
elements and operates at frequencies between 2 and 
6  MHz. The viewing angle is 73°, with a penetration 
depth of up to 400 mm.

Fig. 1 Interventional robotic system adopted in this work. a The ultrasound (US) scanner and the needle are mounted directly on the iSYS 
Micromate™ medical robotic platform through a specially designed holder so that the field of view of the US scanner can be controlled with the 
robot. b Experimental setup used for the in vitro US dataset collection. Reflective markers are attached via rigid bases to the US scanner and to the 
needle posterior allowing their tracking with the infrared camera system
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Motion capture (MoCap) system
We used a MoCap system (8 OptiTrack Cameras 
Prime 17 W [23], four 9.5-mm markers on US scanner, 
four 4-mm markers on distal needle end) to collect the 
ground-truth data for the implementation and evalua-
tion of the “robot in reach of target” algorithm. Using 
the provided Motive software (NaturalPoint Corpora-
tion, Corvallis, USA), we achieve ± 0.2  mm positional 
accuracy, < 9 ms latency, and ± 0.1° rotational accuracy.

Needle
We selected a coated needle (iTP KIR17/20:T, Innova-
tive Tomography Products GmbH, Bochum, Germany) 
designed for US imaging in biopsy interventions with a 
diameter of 1.52 mm and a length of 200 mm.

CIRS triple modality phantom
We used model 057A (CIRS, Norfolk, VA, USA), which 
is based on a small adult abdomen and can be scanned 
with CT, MRI, and US. Multiple biopsy insertions with 
minimal needle tracking can be executed due to its 
self-healing capabilities.

3D printed phantom
We printed a technical phantom with embedded fiducial 
targets (target number 9; mean diameter 8.1 mm, distrib-
uted over approximately 130 × 80 × 90  mm3) for evaluat-
ing aiming accuracy. The phantom was filled with gelatin.

Dataset creation
We used the pipeline described in Fig.  2 to generate 
the training dataset for the needle and target detection 

algorithm. Furthermore, we collected two in vitro data-
sets using the setup depicted in Fig. 1b for the validation 
of the detection algorithm.

Ultrasound simulation
From available numerical US tools [24–26], we used the 
2D version of SIMUS [26] in our pipeline due to its effi-
ciency. SIMUS is a backscattered US signal simulator for 
linear, phased, and convex arrays that are included in the 
Matlab US toolbox. SIMUS computes the received US 
signal based on the position and reflection coefficient of 
each scatterer. The simulation parameters were matched 
with the specifications of our C3 scanner. The overall 
simulation pipeline is illustrated in Fig.  2 and contains 
the following steps.

Preoperative clinical recordings A public 3D MRI clini-
cal, annotated dataset [27], and a 3D CT scan of a CIRS 
057A phantom [28] were used as the basis for the simu-
lated US images. The two datasets were representative 
of different clinical situations concerning the imaging 
modality of the 3D scan data, and contrast and morphol-
ogy of the target regions. The MRI dataset comprises 
monomodal scans of the entire heart collected during a 
single cardiac phase. The annotated target was the left 
atrium. Although less relevant for interventional radiol-
ogy, it served as a challenging benchmark for the detec-
tion algorithm due to the heterogeneous morphology 
of the target and low contrast resolution similar to real, 
clinical US-guided interventions. The CT dataset was of 
the same type of phantom we used for in vitro experi-
ments. As in our phantom, the liver contained six lesions 
but placed in different spots. Boundary masks for two of 
the six lesions were provided with the dataset.

Fig. 2 Proposed pipeline for the simulation of clinical‑like interventional ultrasound (US) images. Single images are extracted from the 
three‑dimensional magnetic resonance imaging (MRI)/computed tomography (CT) data and preprocessed. The MRI/CT data work as a clinical 
recording template for speckle texture and anatomy definition. Needle scatterers created artificially are added to the MRI/CT speckle texture. The 
MUST simulator merging information from the template image and the needle geometry accounts for the US image formation process
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Pre‑processing For both 3D datasets, we selected slices 
where the regions of interest were visible and cropped 
the slices to a field of view and penetration depth typical 
for US images.

Simulation The gray-scale image Igb obtained in the 
pre-processing step was used to create the background 
scattering map by randomly extracting Nbscat pixels as 
scatterers. We empirically selected the scatterer density 
equal to 6 per square wavelength (Nbscat ≈ 48,000). To 
mimic the tissue echogenicity, the intensities of the Igb 
image were used to calculate the reflection coefficients 
Cb of the scatterers. For the needle simulation, we created 
geometries that approximate the shape in terms of the 
length and diameter of the real surgical needle used in 
our experimental setup. Then, we randomly distributed 
scatterers in the corresponding geometry with a density 
of 10 scatterers per square wavelength and with reflec-
tion coefficients Cni ∈ [max(Cb)/4, max(Cb)]. In order to 
mimic a real intervention, we first delineated the needle 
initial position and angle of insertion, then we generated 
a straight trajectory for the needle to follow. The final 
scatterer maps were obtained by combining the back-
ground Cb and the needle Cn scatterer maps.

Synthetic US images The synthetic radiofrequency sig-
nals generated by SIMUS were demodulated to obtain 
in-phase/quadrature signals. Those signals were beam-
formed using a delay-and-sum to obtain B-mode images 
with a dynamic range in dB. We used three values (25, 30, 
and 35 dB) to generate images that vary in dynamic range.

Simulated scenarios
We simulated the following two scenarios using the 
aforementioned ultrasound simulation pipeline.

Scenario #1: From in vivo 3D MRI to ultrasound This 
scenario generated synthetic data using a public, anno-
tated, clinical 3D MRI dataset [27] of the heart. We 
selected 20 fully annotated MRI scans (each from a dif-
ferent patient). For each of them, we extracted the 8 most 
salient consecutive slices (where the target region of inter-
est, i.e., the left atrium, is well visible) from the volumetric 
MRI data. To create a dynamic scene, we iterated through 
the 8 slices while simulating the needle insertion, result-
ing in 48 scatterer templates for the simulated interven-
tion. Needle insertion angles at 40−60° were simulated. In 
total, 2,880 synthetic images were generated. Annotations 
for the left atrium (target) on the synthetic US images 
were adopted from the MRI dataset and the needle tip 
was annotated based on its pre-defined trajectory.

Scenario #2: From in vitro 3D CT to ultrasound In 
addition to the clinical MRI data, we used the publicly 
available CT scan of the triple-modality phantom (CIRS 
057A, Norfolk, VA, USA) [28] to generate synthetic 
data. Fourteen slices where the labeled lesions are vis-
ible were used to generate the background for fourteen 
simulated interventions. Despite the fact that only a 
single image is used as background for each interven-
tion simulation sequence, the background in the syn-
thetic US images changes from image to image due to 
the random downsampling of the background scatter-
ers. We used the labels provided with the CT dataset for 
the target regions and followed the same strategy as in 
scenario#1 for the needle tip trajectory definition and 
annotation. Each intervention generates 48 different US 
synthetic images for a single dynamic range resulting in 
2,016 images for the dataset.

In vitro data acquisitions
To validate the detection algorithm trained on synthetic 
US images, we collected in vitro 2D B-mode images using 
materials and settings specified in Fig. 1b and for the fol-
lowing two scenarios.

Scenario #1: 3D abdominal phantom In this experi-
ment, the robot with a US scanner (Clarius C3) attached 
was manually positioned on the CIRS 057A phantom. 
Fine-positioning using the robot was performed until 
the target lesion was visible in the US images. Once in 
position, the needle (iTP KIR17/20:T) was inserted at an 
in-plane angle of 40° up to a depth of 60  mm. We per-
formed three interventions for a total of 670 US images. 
The ground-truth lesions and needle tip positions were 
labeled by hand.

Scenario #2: 3D gelatin phantom Here, we used the 
same experimental setup as in the previous in vitro sce-
nario, but with the dedicated 3D-printed phantom filled 
with commercial gelatin to simulate tissue. The resulting 
dataset was used to test the DETR algorithm. The inser-
tion of the needle (iTP KIR17/20:T) was performed at 40, 
55, and 60°, respectively. We performed 9 interventions 
for a total of 1,800 US images. This scenario only con-
tains the needle tip with ground-truth position labeled by 
hand.

Needle and target detection algorithm
To detect the needle and the target in all the aforemen-
tioned scenarios, we adapted the state-of-the-art detec-
tion transformer (DETR) neural network [29] for US 



Page 6 of 11Arapi et al. European Radiology Experimental            (2023) 7:30 

images. As depicted in Fig. 3, DETR uses a convolutional 
neural network backbone for 2D feature extraction from 
images. The 2D representation was supplemented with a 
positional encoding and fed into a transformer encoder. 
Then, a transformer decoder attends to the encoder out-
put and takes as input a small fixed number of learned 
positional embeddings (object queries). A shared feed-
forward network processes each output embedding of 
the decoder to classify either a detection (target/needle 
with bounding box) or a “no object”.

Training details of the detection transformer
Since DETR operates on RGB images, we modified the 
input to consider US gray-scale images and modified its 
output classes according to ours (“needle” and “target”). 
The model was initialized from a COCO-pretrained ver-
sion. AdamW optimizer with an initial learning rate of 
 10‑4 was used for the fine-tuning. The learning rate and 
weight decay for the backbone (ResNet-50) were set 
to  10‑5 and  10‑4, respectively. Xavier initialization was 
adopted for the weights, and the dropout was set to 
0.1. We used the same loss function as proposed in lit-
erature [29]. The ground-truth needle tip location was 
the left bottom corner of the bounding box (x, y), and 
the size of the bounding box w × h was chosen to be at 

least 20 × 20 pixels and at most 30 × 30 pixels. These val-
ues were empirically determined in order to ensure the 
smallest pixel dimensions for an object to be detected 
by the DETR. For the target annotation, we adopted the 
original masks with bounding boxes from the annotated 
MRI/CT datasets. We fine-tuned the DETR on the two 
simulated datasets using 2,304 (80%) images (scenario 
#1) and 1,584 (80%) images (scenario #2) for 30 epochs. 
Both fine-tuned models were tested using the remain-
ing 20% of the simulated datasets and all images of the in 
vitro datasets. Fine-tuning of the DETR took an average 
of 36 min (scenario #1 dataset) and 27 min (scenario #2 
dataset) on a single NVIDIA TITAN RTX 24 GB graph-
ics processing unit. We report the results after 30 epochs 
of fine-tuning for an overall evaluation. The mean needle 
and target detection time was 0.03 s which corresponds 
approximately to 33 frames/s.

“Robot in reach of target” method
To position the Micromate robot in reach of the target 
prior to needle insertion using only 2D US images, we 
make use of our detection algorithm and metric informa-
tion obtained from an initial, one-time calibration. The 
latter is performed by tracking the needle tip with our 

Fig. 3 A systematic overview of the target and needle detection learning pipeline. The detection transformer (DETR) is trained on synthetic data 
and evaluated on unseen synthetic and in vitro testing data
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MoCap system in the world frame and simultaneously 
determining its position in the US images. The calibra-
tion procedure determines the transformation from the 
MoCap (world) frame into the US imaging frame using the 
direct linear transformation method [30]. The resulting 
homography matrix H can be used to project 2D points 
from the world frame into the US imaging frame and vice 
versa. Since the transformation between the US scanner 
and the needle holder is fixed, an optimal position of the 
robot with respect to the target can be obtained from US 
images alone with only the needle in-plane angle as a free 
parameter. Figure 4 illustrates the overall procedure. Once 
calibrated, the point  pu representing the desired needle tip 
position in the US frame (based, e.g., on the detected tar-
get location) can be projected to the external coordinate 
frame through the homography matrix H. This yields the 
target position for the needle tip  po in the external frame. 
Now the robot can be positioned so that the needle tip is 
able to reach the desired target location.

Results
Needle and target detection results
Tables 1 and 2 show the mean average precision (mAP) of 
bounding boxes averaged on thresholds ∈ [0.5:0.05:0.95] 
for all detections and the total loss for different testing 
datasets. Table  1 shows the performance of the model 
trained on the synthetic scenario#1 dataset. The model 
trained for detecting both needle and the left atrium 
(synth#1‑both) achieved an mAP of 95%, showing a very 
good detection accuracy. We also trained two additional 
models, one only for needle detection (synth#1‑needle) 
and one only for the left atrium (synth#1‑heart), respec-
tively. While the former performed very well, achieving 
an mAP of 98%, the mAP decreased to 80% for the lat-
ter. The (synth#1‑needle) model was evaluated with both 
in vitro datasets for needle tip detection accuracy. The 
mAPs of both the in vitro scenarios (in‑vitro#1‑needle, 
in‑vitro#2‑needle) were lower (77% and 74%) compared 
to testing with synthetic data.

Fig. 4 Block diagram used in the robot in reach of the target method. Both the projected point pu representing the needle tip and the target 
bounding box provided by the detection transformer (DETR) are exploited for the fine positioning of the needle through the robotic positioning 
unit and the needle holder

Table 1 Evaluation of the detection transformer trained on the synthetic heart valve dataset (scenario #1)

mAP Mean average precision

Test dataset Synthetic heart (#1) In vitro CIRS (#1) In vitro phantom 
(#2)

Both Needle Heart Needle Needle

mAP 0.95 0.98 0.8 0.77 0.74

Total loss 2.5 2.1 2.8 3.1 2.9



Page 8 of 11Arapi et al. European Radiology Experimental            (2023) 7:30 

Table  2 shows the performance of the model trained 
on the synthetic scenario#2 dataset. The model trained 
for the detection of the needle tip and the two lesions 
(synth#2‑both) achieved an mAP of 97%. The mod-
els trained only for needle (synth#2‑needle) or lesions 
(synth#2‑lesion) showed an mAP of 98% and 95%, 
respectively. The (synth#2‑needle) model was tested on 
both in vitro datasets. The first in vitro scenario was the 
same as the synthetic scenario#2; hence, we evaluated 

both the needle tip and the lesions (in‑vitro#1‑both), 
achieving an mAP of 83%. Then, we individually tested 
the needle tip detection (in‑vitro#1‑needle) and lesions 
detection (in‑vitro#1‑lesion), achieving an mAP of 85% 
and 81%, respectively. Finally, we tested the in vitro data-
set #2 (in‑vitro#2‑needle) with an mAP of 86%.

Figure 5 shows the needle and target detection results of 
five salient frames from the four validation datasets each. 
Note that despite the presence of other high-intensity 

Table 2 Evaluation of the detection transformer trained on the synthetic CIRS (liver) dataset (scenario #2)

mAP Mean average precision

Test dataset Synthetic CIRS (#2) In vitro CIRS (#1) In vitro phantom (#2)

Both Needle Lesion Both Needle Lesion Needle

mAP 0.97 0.98 0.95 0.83 0.85 0.81 0.86

Total loss 2.1 1.8 2.3 2.8 2.6 3.1 2.7

Fig. 5 Evolution of needle and target detection in five different frames relative to the four testing datasets: synthetic data generated from magnetic 
resonance imaging scans, the target being the left atrium (a); synthetic data generated from the computed tomography scan, the targets being 
the two liver lesions (b); in vitro acquisition adopting the three‑dimensional (3D) CIRS phantom with the liver lesion, with a different plane than 
the actual experiment in b used for the acquisition (c); and in vitro acquisition adopting the 3D‑printed phantom filled with gelatin. In the last 
experiment, only the needle is the object to be localized in the ultrasound image. See the video (Supplemental Material) for more examples
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interfering artifacts in the B-mode data, the needle tip 
and the target were accurately localized. In particular, we 
can observe that for synthetic scenario#1 (Fig. 5a), the left 
atrium is well recognized, even though its irregular shape 
changes from frame to frame and despite the blurriness 
of its borders. In synthetic scenario #2 (Fig. 5b), the nee-
dle and the two lesions were successfully localized by the 
network. Figure  5c refers to in vitro acquisitions with a 
similar configuration as in synthetic scenario#2 as the 
same CIRS Phantom is used to perform the needle inter-
vention. We can observe that the needle and the lesion are 
properly detected using the DETR previously trained with 
synthetic data. Finally, Fig. 5d shows the performance of 
the DETR for needle tip detection in in vitro US images of 
the 3D printed phantom filled with gelatin.

“Robot in reach of target” results
We used the in vitro scenario#2 US images for the com-
putation of the homography matrix H (six interventions) 
and its evaluation (three interventions). For the valida-
tion experiment, three needle insertions performed at 
different initial points and angles were performed. The 
estimated needle tip positions were obtained by project-
ing the MoCap coordinates into the 2D US space through 
the homography matrix H. The root mean square error 
of the projection expressed in the MoCap frame was 
2.8 mm for all three evaluation insertions.

Figure 6 illustrates an example of the “robot in reach of 
target” method. If the target is detected in the US image 

by the DETR algorithm, its metric distance to a fixed ref-
erence point on the robot-US-scanner unit can be com-
puted using the H matrix obtained in the calibration step. 
This enables one to position the robot such that the tar-
get can be reached with the needle. Figure 6 can be inter-
preted to show the possible trajectories of the needle tip 
in the US frame for different in-plane needle insertion 
angles prior to actual needle insertion. In this example, 
the center trajectory would successfully reach the desired 
target location. No MoCap system was needed for this; 
only the needle length and the available angles of the 
needle holder for needle insertion are sufficient to recon-
struct the position of the needle tip, whereas state-of-
the-art approaches require a MoCap system throughout 
the procedure.

Discussion
A main challenge for DL-based algorithms is the need 
for large amounts of annotated data to train models of 
sufficient accuracy and robustness. While publicly avail-
able, annotated datasets for diagnostic imaging have been 
steadily increasing [29, 31, 32], datasets for interventional 
procedures are very limited and often are not annotated 
for target anatomy or surgical tools. To overcome this 
challenge, we have developed a novel simulation pipe-
line for the generation of clinical-like, interventional US 
images, including the necessary annotations for train-
ing state-of-the-art neural networks. Since 3D imaging 
datasets for diagnostic purposes such as CT or MRI are 

Fig. 6 A validation example of the robot in reach method. Three different needle insertions at different initial points and angles are considered. The 
colorized blue and red circles represent the ground truth and the projected coordinates of the needle tip, respectively. The detected target through 
the detection transformer (DETR) is exploited to configure the robot positioning unit and the needle holder to perform a successful intervention
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frequently available in clinical practice, including annota-
tions of relevant regions of interest (e.g., tumor lesions), 
the proposed US simulation pipeline can be used to gen-
erate training data for a variety of interventions, and even 
for patient-specific training data, without the need of 
time-consuming and error-prone manual annotation.

We have illustrated the validity of our approach by 
training DETR networks with synthetic data generated 
by our simulation pipeline using two different simulated 
clinical use cases and two different imaging modalities. 
We have observed that the needle detection performed 
very well in both the synthetic testing datasets (97% and 
98% mAP, respectively). Also, the lesion detection per-
formed very well (95% mAP), while the left atrium detec-
tion decreased (80% mAP) due to the fact that the latter is 
a very challenging task. Absent publicly available bench-
mark datasets, a direct comparison to state-of-the-art 
AI-based detection methods is difficult. Moreover, the 
approaches proposed in literature so far focused mostly 
on needle detection and not the more challenging needle 
and lesion/organ detection. The authors in [17] achieved 
an mAP of 95% with a frame rate of 10 frames/s, whereas 
we achieve an mAP of 98% for needle detection in both 
simulated scenarios and at 30 frames per second.

A crucial aspect in minimally invasive interventions 
is the initial positioning of the surgical tool with respect 
to the target. Different studies have reported promis-
ing CT image-guided navigation with C-arm systems 
combined with remote-operated positioning and guid-
ance systems [33, 34], resulting, e.g., in the reduction 
of radiation exposure while enhancing precision [34]. 
With cost efficiency and operational capacity in mind, 
a prototype robotic tool for US-guided biopsy dur-
ing video-assisted surgery was proposed [35]. Under 
ideal conditions (target immersed in water), the system 
achieves a mean target localization error of 2.05  mm 
and a maximum error of 2.49  mm. In our work, we 
equipped the new version of the robotic platform intro-
duced in [34] with a US scanner and have shown that 
our proposed method can be used to accurately posi-
tion the micro-robot platform on the patient in order 
to be able to reach the target and based on 2D US 
images alone. The mean error we achieve (2.8  mm) is 
slightly bigger but comparable to that reported by other 
authors [35] even though our experiments were con-
ducted using gelatin (and not water) which introduces 
some uncertainties due to needle bending induced by 
contact with a denser texture.

Even though the accuracy on the in vitro testing data-
set is not as high as when evaluating with synthetic data 
(this is due to the very different clinical conditions as 
the network was trained on the synthetic heart dataset 
but deployed on the in vitro liver/abdomen dataset), 

the achieved performance is very good illustrating the 
sim-to-real capability of our data simulation and train-
ing approach. While we have validated our approach 
with in vitro data and feel confident that the results 
will translate to clinical data, this will be confirmed by 
future experiments. We have only evaluated the nee-
dle detection algorithm for situations where the needle 
is in-plane with the US imaging plane. Nevertheless, 
since the proposed method detects the needle tip (not 
the entire needle shaft), partially out-of-plane needle 
localization is still possible. We have observed in our 
experiments that the needle we have used is prone to 
slight bending. While this does not affect the accuracy 
of needle tip localization, it can have an adverse effect 
on the accuracy of the proposed “robot in reach of 
target method”. Needle localization accuracy with our 
algorithm was sometimes negatively affected if there 
are bright speckles in its vicinity.

We will further investigate these aspects in our future 
work to be able to draw conclusions for a wider array of 
different clinical situations. We have so far not investi-
gated the impact of organ movement due to breathing 
or external pressure on our method. We will address this 
challenge in our future work by integrating the needle 
and target detection outcomes in a more complex state 
estimation structure relying also on the robotic platform.
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