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Abstract 

Background  Computed tomography (CT) is increasingly used in the clinical workup, and existing scan contains 
unused body composition data, potentially useful in a clinical setting. However, there is no healthy reference for 
contrast-enhanced thoracic CT-derived muscle measures. Therefore, we aimed at investigating whether there is a cor-
relation between each of the thoracic and third lumbar vertebra level (L3) skeletal muscle area (SMA), skeletal muscle 
index (SMI), and skeletal muscle density (SMD) at contrast-enhanced CT in patients without chronic disease.

Methods  A proof-of-concept retrospective observational study was based on Caucasian patients without chronic 
disease, who received CT for trauma between 2012 and 2014. Muscle measures were assessed using a semiauto-
mated threshold-based software by two raters independently. Pearson’s correlation between each thoracic level and 
third lumbar and intraclass correlation between two raters and test–retest with SMA as proxy parameters were used.

Results  Twenty-one patients (11 males, 10 females; median age 29 years) were included. The second thoracic 
vertebra (T2) had the highest median of cumulated SMA (males 314.7 cm2, females 118.5 cm2) and SMI (97.8 cm2/m2 
and 70.4 cm2/m2, respectively). The strongest SMA correlation was observed between T5 and L3 (r = 0.970), the SMI 
between T11 and L3 (r = 0.938), and the SMD between the T10 and L3 (r = 0.890).

Conclusions  This study suggests that any of the thoracic levels can be valid to assess skeletal muscle mass. However, the T5 
may be most favourable for measuring SMA, the T11 for SMI, and T10 for SMD when using contrast-enhanced thoracic CT.

Relevance statement  In COPD patients, a CT-derived thoracic muscle mass assessment may help identify who 
would benefit from focused pulmonary rehabilitation: thoracic contrast-enhanced CT conducted as part of the stand-
ard clinical workup can be used for this evaluation.

Key points   
• Any thoracic level can be used to assess thoracic muscle mass.

• Thoracic level 5 is strongly associated with the 3rd lumbar muscle area.

• A strong correlation between the thoracic level 11 and the 3rd lumbar muscle index.

• Thoracic level 10 is strongly associated with the 3rd lumbar muscle density.
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Graphical Abstract

Background
Over the past decades, the importance of body compo-
sition has become evident as reduced muscle mass and 
sarcopenia have adverse outcomes for the patients [1–
4]. Reduced muscle mass, quality, and/or strength has 
been reported to be associated with an increased risk 
of adverse outcomes such as falls and fractures, more 
prolonged hospital admissions, increased risk of com-
plications in both medical and surgical treatments, and 
increased risk of mortality [3–6]. A wide range of dif-
ferent patient groups are at risk of developing reduced 
muscle mass and/or sarcopenia; these include, among 
others, diabetes, chronic obstructive pulmonary disease 
(COPD), and cancer [5–7]. Various metrics are avail-
able to determine the body composition, i.e., anthro-
pometric measures such as body mass index (BMI) or 
body circumferences. However, these do not discrimi-
nate between the relative proportions of muscle and fat 
mass [5], so they do not detect early signs of pathological 
changes in body composition.

Computed tomography (CT) can differentiate between 
tissues such as muscle, fat, and bone by their radioden-
sity. This allows for individual muscles assessment and 

determine muscle quantity and quality [1, 5, 8]. Conven-
tional abdominal CT scans are widely used in research 
of body composition, defining typically the third lumbar 
vertebra (L3) as a reference level of assessment [9, 10]. 
Based on a single axial image from abdominal imaging, 
the skeletal muscle mass has been validated and corre-
lated to the overall skeletal muscle mass [11]. The skel-
etal muscle mass, based on CT, is often reported as the 
skeletal muscle area (SMA, cm2), height-adjusted skel-
etal muscle index (SMI, cm2/m2), and skeletal muscle 
density (SMD, mean Hounsfield unit (HU) of SMA) as a 
measure of muscle quality [9, 10]. CT scans have become 
more frequently used and implemented as part of the 
clinical workup [12, 13]. It has been recommended to 
use non-contrast CT scans when determining the body 
composition as there are several considerations when 
intravenous contrast media is used, e.g., iodine con-
centration, CT parameters, the circulation of the body, 
and size of the patient [3, 14]. However, in some patient 
groups, only thoracic CT is used as part of the standard 
clinical workup, e.g., in patients with COPD. As patients 
with COPD are one of the largest, most comorbid patient 
groups [15–17], there has been an increased focus on the 
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thoracic CT as a source for assessing the skeletal muscle 
mass as well [18, 19].

In 2021, 296,390 thoracic CT scans were conducted 
nationwide in Denmark [20]. However, in the daily clini-
cal workup, it is locally seen in the Northern Region of 
Denmark that 53% of the thoracic CT scans are con-
ducted using intravenous administration of iodine con-
trast agent (Supplementary Table S1). This is a challenge 
as there is no reference for contrast-enhanced thoracic 
CT muscle measure, neither clear reference for conven-
tional abdominal CT, especially on muscle density [21–
23]. Before CT scans from the daily clinical work can be 
used to assess skeletal muscle in patients with chronic 
diseases, there is a need of a reference of patients with-
out chronic disease with knowledge of sex, age, size, eth-
nicity, and how contrast-enhanced thoracic CT muscle 
measures correlate to the L3 muscle measures with the 
same CT parameters and CT protocol. As such, we want 
to explore the correlation between muscle quantity and 
quality indexes on L3 and thoracic levels in patients with-
out chronic disease before measuring them on patients 
with chronic conditions.

We hypothesised that the thoracic vertebras (T) 2 to 
T12 in contrast-enhanced thoracic CT were equally 
suited to assess the muscle mass and density in a Cau-
casian population without chronic disease. To do so, a 
systematic image selection and segmentation were con-
ducted from the T2 to T12 with focus on the muscle 
mass and density.

The primary aim was to investigate whether there 
is an association between each of the thoracic levels to 
the L3 level SMA, SMI, and SMD when using contrast-
enhanced thoracic and abdominal CT in patients without 
chronic disease as a proof of concept. The secondary aim 
was to assess the inter-rater agreement between image 
selections and inter- and intra-rater agreement on the 
thoracic skeletal SMA as a proxy parameter.

Methods
Study design and population
This retrospective proof-of-concept study was approved 
by the National Danish Scientific Ethics Committee 
(2300176), the Danish Patient Safety Authority (31–1521-
138), and the Danish Data Protection Agency 2020–154.

The study was carried out in Caucasian patients, who 
underwent consecutive thoracic and abdominal CT scans 
as a part of the trauma protocol in the North region of 
Denmark. Scans were conducted between 2012 and 2014. 
This period was selected as the trauma protocol was har-
monised throughout the region from 2012 and limited 
to 2014 due to the risk of an unreasonable workload and 
strict data policies. Patients’ medical records and medical 
treatment at the time of the scans were assessed.

The trauma CT scans were selected to ensure a stand-
ardised scan protocol with intravenous contrast and a 
procedure with both thoracic and abdominal CT with 
presumable healthy patients. Figure  1 shows the inclu-
sion of patients. Inclusion criteria were Caucasian 
patients ≥ 18 years old. The exclusion criteria were sign of 
circulatory shock, damage to the torso, or comorbidities 
(heart failure, chronic respiratory diseases, chronic kid-
ney disease, chronic inflammatory diseases, endocrino-
logical diseases, or cancer, as these diseases are known 
to affect the body composition) [5–7]. The comorbidities 
hypertension, hypercholesterolemia, and anxiety were 
allowed in the study. In addition, patients with previous 
thoracic and abdominal surgery, or foreign objects, such 
as metallic implants, were excluded due to the risk of scar 
tissue and artefacts.

CT protocol
Trauma CT scans were identified by the Danish Medi-
cal Classification System. Scans were conducted using 
SOMATOM Definition Flash (Siemens Healthineers, 
Erlangen, Germany), Light Speed Pro32, or Discovery 
CT750HD (General Electric Healthcare, Chicago, IL, 
USA). All scanners were air calibrated daily and con-
stancy tested monthly using producer fabricated water 
and air phantom.

Patients were in supine position with arms raised above 
the head and full inspiratory phase. The technical param-
eters were as follows: 120 kVp, autoregulated mAs, sin-
gle collimation 0.6–0.625 mm, scan field of view 50 cm, 
total collimation width 20–40  mm, pitch 0.5–0.984, 
axial reconstruction, slice thickness 5  mm, and kernel 
Standard (General Electric scanners) or B31f (Siemens 
scanners).

Scans were conducted in venous contrast phase by the 
following steps: (i) bolus of 100  mL contrast (Iomeron 
400 mg/mL, Bracco, Milan, Italy) with intravenous injec-
tion speed 3.0–4.1 mL/s, followed by a bolus of 37–50 mL 
saline with injection speed 2.9–4.1  mL/s, and (ii) bolus 
tracking with a region of interest set at the aorta at 1st 
lumbar vertebra level (the scan was initiated 30–35  s 
after HU increased by 100 HU). For further information 
on CT parameters, see Supplementary Table S2.

Image selection and analysis
First, in eligible patients, both raters select axial images 
from the T2 to T12 and third lumbar level independently. 
Rater 1 selected all axial images from each level for all 21 
patients, whereas rater 2 only selected all axial images 
for each level of ten patients chosen at random. The two 
raters selected images based on the following criteria: (i) 
the axial image closest to the midline of the anterior mar-
gin of the vertebra seen in sagittal view (Fig. 2) and (ii) in 
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the case of a tie between two images, the one below the 
midline was chosen.

Second, images from the ten patients selected by both 
raters were checked for agreement of the image selec-
tions before any muscle assessment was conducted. If any 
disagreement on the selected axial images occurred, a 
consensus between the raters was made.

Third, both raters conducted muscle measures inde-
pendently. Rater 1 conducted muscle measures on all 
images of the 21 patients, and rater 2 conducted muscle 
measures on the ten patients chosen at random from 
the image selection. The two raters both conducted a 
test–retest of the images of ten patients, independently. 
Rater 1 recorded the time spend on segmentation of all 
21 patients the first time. Rater 1 had 9 months between 
measures, was a pulmonologist fellow with 4  years of 
experience, and had 2 years of experience and education 

within thoracic CT imaging. The secondary rater had 
4 months between measurements, had 11 years of expe-
rience as a resident, and was a radiologist fellow with 
10-month experience and education within thoracic CT 
imaging.

Software and settings
A threshold-based semiautomated “Viking Slice” soft-
ware was used for segmentation [24]. An example of 
segmentation can be seen in Fig.  3. The upper and 
lower threshold for muscle tissue attenuation were HU 
between -29 and + 150 HU, while they were -190 and -30 
HU for fat tissue [24, 25].

When loading an image for analysis, the software makes 
a preliminary estimate based on the HU of the pixel as 
described above, hereby classifying pixels as either mus-
cle, subcutaneous fat, visceral fat, and other tissues (bone 

Assessed for eligibility (n=220 patients)

<18 years old (n=9)

Other ethnicity (n=17)

CT not avaliable (n=25)

Unconscious patient (n=13)

Technical issues (n=95)

Specified technical issues

Wrong protocol/other parameters (n=18)
Field of view to narrow (n=35)
Artefacts (eg. foreign objects or contrast) (n=22)
Positioning skewed (n=1)
Arms down (n= 19)

Damage to torso (n=5)

Previous operation (n=9)

Comorbidities (n=15)

Missing patient data (n=11)

Patients included (n=21)

n=211

n=194

n=169

n=156

n=61

n=56

n=47

n=32

Fig. 1  Flow diagram of the eligible, excluded, and included study patients
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and connective tissue). Minor corrections from the raters 
were necessary to remove blood vessels in the dermis 
and subcutaneous compartment, as well as larger vessels 
in axillary region of the thorax, and the intestine in the 
intraabdominal compartment as these were interpreted 
as muscle based on the HU. It was a simple manoeuvre 
allowing large areas to be corrected at a time and thereby 
removing pixels mistaken for muscle without interfering 
with pixels defined as fat or other tissues. Correction of 
each image takes approximately 2–7 min.

Data were reported as cumulated SMA (cm2) of a sin-
gle axial image (not including fat) and the height-adjusted 
SMI (cm2/m2) from T2 to T12. T1 is left out due to these 
images consisted of neck and throat muscles in many 
patients. The intercostal muscles were excluded from the 
segmentation to avoid the effect of bone area and bone 
density from the costae on the SMA and SMD. The SMD 
was reported as the mean HU of measured SMA. The 
lower the mean HU, the poorer the muscle quality [25].

Statistics
Data were reported descriptively. Demographics and 
skeletal muscle measurements are reported separately 
as median and 95% confidence interval (CI) for continu-
ous variables and as proportions for categorical variables. 
Data was checked for normal distribution. The Wilcoxon-
Mann–Whitney test was used to assess sex difference 
with ordinal data. A Pearson’s correlation was applied 
between the SMA, SMI, and SMD of each thoracic level 
and L3. The correlation of SMA, SMI, and SMD was 
considered stable as females are expected to have lower 
measurements than males.

Inter-rater agreement was evaluated by a two-way 
intraclass correlation coefficient (ICC) random-effect 

model, and intra-rater agreement was evaluated by the 
two-way ICC mixed-effect model. The individual ICC 
was reported in both the inter- and intra-rater agree-
ment. Furthermore, Bland–Altman plots were used to 
visualise the agreement between raters and systematic 
bias along with test–retest.

Statistical analyses were conducted using STATA 17.0 
(Stata Corp LLC, College Station, TX, USA).

Results
In total, 21 patients (11 males, 10 females) were included 
in this proof-of-concept study. They had a median age of 
29  years old (range 18 to 60  years). Males were signifi-
cantly taller than females (median, males 1.78 m, females 
1.68  m, p = 0.003). As shown in Table  1, males had sig-
nificantly higher SMA (p < 0.0001–0.0009) and SMI 
(p = 0.0003–0.0015) than females at all thoracic levels 
and L3.

Body composition
Figure  4 demonstrates SMA (a), SMI (b), and SMD (c) 
at T 2–12 and L3, in males and females. Figure 4a shows 
that the thoracic level with largest SMA was T2 with a 
median of 314.7 cm2 for males and 188.5 cm2 for females. 
As seen in Fig.  4a, SMA decreased with each descend-
ing thoracic level for both males and females. Figure 4b 
shows that the same applied for the SMI, where males 
had highest median of 97.8 cm2/m2 and females had 
median of 70.4 cm2/m2 at T2, with decreasing SMI for 
each descending thoracic level. The SMI at L3 was 61.0 
cm2/m2 for males and 45.1 cm2/m2 for females. Figure a 
and b shows that males had wider CI in both SMA and 
SMI, whereas females had a plateau at the lower tho-
racic levels T10–T12. SMA and SMI increased at L3 in 

Fig. 2  Selection of the axial image closest to the midline of the anterior margin of the vertebra (seen in sagittal view) was conducted. The red 
arrows show the anterior margins of the vertebras. The yellow line shows the midline of the vertebra where the axial image is selected. T, Thoracic 
vertebra
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both sexes and had a median of 202.1 cm2 and 117.1 cm2, 
respectively. As shown in Fig.  4c, females had higher 
median SMD compared to males. However, the widest 
CI was observed in females at L3 level. The level with the 
lowest median SMD was at T8 in males and females.

We found a linear association between SMA, SMI, and 
SMD at all thoracic levels and the L3. For further infor-
mation, see Supplementary Figs. S3, S4 and S5.

Correlations
As shown in Table  2, there was a significant correla-
tion between SMA of each of the thoracic levels and 
the L3, ranging from r = 0.917 at T8 to r = 0.970 at T5 
(all p-values < 0.0001). The same applied for the SMI, 
where there was a significant correlation between each 
of the thoracic levels and L3, ranging from r = 0.883 at 

T6 and T10 to r = 0.938 at T11 (all p-values < 0.0001). 
Furthermore, there was a significant correlation 
between the SMD of each thoracic level and L3 that 
varied from r = 0.526 at T2 to r = 0.890 at T10 (p-values 
between < 0.0001 and 0.0142).

Agreement and reliability
The image selection showed there was high agree-
ment between the two raters of 97%. There was consen-
sus agreement on 3 single images out of the 120 images 
(2.5%) both raters selected. The inter-rater agreement of 
SMA was lowest at T11 with an ICC = 0.9940 and had 
the lowest lower limit (CI = 0.9770). All other levels had 
higher ICC and higher lower limit CI. The levels with the 
strongest interrater agreement were at T4, T5, and T7, all 
with ICC = 0.9994 (p < 0.0001).

Fig. 3  Example of segmentation of the axial images from a contrast-enhanced thoracic and abdominal computed tomography scan on a 
27-year-old female. Thoracic level 2 (a), thoracic level 3 (b), thoracic level 4 (c), thoracic level 5 (d), thoracic level 6 (e), thoracic level 7 (f), thoracic 
level 8 (g), thoracic level 9 (h), thoracic level 10 (i), thoracic level 11 (j), thoracic level 12 (k), and lumbar level 3 (l)
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Figure 4 a and b shows the inter- and intra-rater agree-
ment of SMA of each thoracic level and the L3. The intra-
rater agreement of SMA for the primary rater had the 
lowest agreement at T12, with ICC = 0.9908 (p < 0.0001), 
with the lowest lower limit CI = 0.9636 at T12. Also, the 
secondary rater had lowest agreement of SMA at T12 
with ICC = 0.9961 (p < 0.0001), with the lowest lower 
limit of CI = 0.9844. The strongest intra-rater agreement 

for rater 1 was at T7 with ICC = 0.9998, whereas the sec-
ondary rater had the strongest intra-rater agreement at 
T2 and T4 with ICC = 0.9999 (see Supplementary Tables 
S6.1, S6.2 and S6.3 for further information on inter- and 
intra-rater ICC and CI).

As seen in Fig. 5a, the differences in SMA between raters 
1 and 2 are visualised based on the first segmentation. 

Table 1  The skeletal muscle area, skeletal muscle index, and skeletal muscle density

p-values are reported for the differences between males and females. CI Confidence interval, HU Hounsfield units, SMA Skeletal muscle area, SMD Skeletal muscle 
density, SMI Skeletal muscle index

Females Males p-value

Level Number Median 95% CI Number Median 95% CI

SMA (cm2) T2 10 188.5 150.1–200.0 11 314.7 222.3–385.7 0.0001

T3 10 176.6 128.8–209.2 11 298.3 195.6–350.3 0.0002

T4 10 157.2 116.0–192.7 11 270.3 178.8–319.2 0.0002

T5 10 141.2 102.9–168.6 11 242.6 152.4–296.2 0.0003

T6 10 127.4 86.0–148.3 11 215.0 132.3–273.1 0.0003

T7 10 107.2 69.4–127.9 11 177.2 107.1–228.1 0.0004

T8 10 88.6 56.5–106.3 11 142.6 82.1–189.2 0.0006

T9 10 70.2 46.5–90.0 11 126.7 82.3–165.7 0.0003

T10 10 69.3 53.0–81.9 11 119.9 74.9–148.6 0.0002

T11 9 64.9 52.7–80.3 11 115.5 72.2–155.4 0.0003

T12 10 62.6 57.1–80.6 11 121.7 76.7–157.2 0.0001

L3 10 117.1 111.3–144.2 11 202.1 139.0–225.3 0.0002

SMI (cm2/m2) T2 10 70.4 57.2–73.5 11 97.8 70.2–119.0 0.0004

T3 10 66.7 49.1–74.1 11 90.1 61.7–107.4 0.0007

T4 10 59.2 44.2–68.3 11 79.1 56.4–97.3 0.0006

T5 10 54.3 39.2–59.7 11 72.4 48.1–88.2 0.0009

T6 10 48.6 32.8–52.5 11 64.9 41.8–78.9 0.0009

T7 10 39.4 26.4–46.9 11 56.5 33.8–66.7 0.0015

T8 10 32.7 21.5–39.0 11 45.1 25.9–54.7 0.0015

T9 10 26.8 17.7–31.9 11 38.7 26.0–47.9 0.0012

T10 10 24.8 19.8–29.0 11 37.1 24.0–45.3 0.0009

T11 9 24.3 20.1–28.5 11 33.1 22.8–51.3 0.0012

T12 10 23.8 19.8–28.6 11 37.6 24.2–45.3 0.0003

L3 10 45.1 36.3–51.1 11 61.0 43.9–70.8 0.0006

SMD (mean HU) T2 10 60.0 43.2–63.2 11 53.1 47.5–62.1 0.0486

T3 10 60.1 46.4–64.5 11 52.4 47.3–61.5 0.0201

T4 10 60.8 50.6–64.9 11 52.6 45.9–59.9 0.0015

T5 10 60.2 49.3–65.5 11 51.4 40.6–56.6 0.0019

T6 10 57.1 49.4–63.9 11 51.4 32.2–54.6 0.0008

T7 10 54.8 48.9–62.2 11 47.0 30.9–54.9 0.0031

T8 10 52.1 46.1–59.7 11 42.4 34.8–53.2 0.0060

T9 10 53.7 47.0–59.5 11 43.9 32.2–56.4 0.0031

T10 10 55.6 46.4–65.7 11 45.6 33.6–54.7 0.0006

T11 9 56.3 45.4–61.9 11 45.5 34.3–57.1 0.0027

T12 10 59.2 44.1–67.1 11 46.4 34.3–57.2 0.0011

L3 10 59.6 42.5–72.7 11 50.0 40.1–60.1 0.0075
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Fig. 4  Distribution of muscle measures visualised with boxplots for each level for females and males. Skeletal muscle area (a). Skeletal muscle index 
(b). Skeletal muscle density (c)
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Figure 5b shows the differences between the first and the 
second segmentation in SMA. Most of the differences 
observed are gathered around 0 with random fluctuation. 
There were a few outliers. For further information on the 
Bland Altman plots, see Figs. S7 and S8.

Discussion
To our knowledge, this is the first study that inves-
tigates skeletal muscle mass by systematic thoracic 
muscle segmentation from T2 to T12 in a study popu-
lation without significant comorbidities, comparing 
each thoracic level to L3. Males had larger SMA and 
SMI compared to females, whereas females had the 
highest SMD at all thoracic and levels along with L3. 
There was an excellent correlation between the SMA 

of all thoracic levels and the L3; however, the strong-
est correlation was seen between T5 and L3. The cor-
relation between the SMD at each thoracic level to the 
L3 was strong. The method proves valid when assess-
ing skeletal muscle mass in presumed healthy Cauca-
sian on contrast-enhanced thoracic CT as there was a 
high inter- and intra-rater agreement with the highest 
interrater agreements at T4, T5, and T7.

We found that the largest muscle mass in both sexes 
was found at T2, decreasing towards the lower thoracic 
levels, and SMA had, at all levels, an excellent correlation 
to L3. The strongest correlation to L3 was seen at the T5 
level, which suggests this area may be most favourable to 
assess the SMA and SMI when only thoracic CT is avail-
able in terms of finding low or reduced SMA and SMI.

Table 2  Correlation between the skeletal muscle area, skeletal muscle index, and skeletal muscle density at each of the thoracic levels 
T2 − T12 and the third lumbar level (L3)

SMA Skeletal muscle area, SMD Skeletal muscle density, SMI Skeletal muscle index

SMA SMI SMD

Comparison r p r p r p

T2 versus L3 0.961  < 0.00001 0.912  < 0.00001 0.526 0.0142

T3 versus L3 0.966  < 0.00001 0.903  < 0.00001 0.585 0.0054

T4 versus L3 0.968  < 0.00001 0.921  < 0.00001 0.751 0.0001

T5 versus L3 0.970  < 0.00001 0.924  < 0.00001 0.808  < 0.0001

T6 versus L3 0.944  < 0.00001 0.883  < 0.00001 0.776  < 0.0001

T7 versus L3 0.930  < 0.00001 0.869  < 0.00001 0.814  < 0.0001

T8 versus L3 0.917  < 0.00001 0.837  < 0.00001 0.878  < 0.0001

T9 versus L3 0.936  < 0.00001 0.849  < 0.00001 0.821  < 0.0001

T10 versus L3 0.960  < 0.00001 0.883  < 0.00001 0.890  < 0.0001

T11 versus L3 0.955  < 0.00001 0.938  < 0.00001 0.848  < 0.0001

T12 versus L3 0.953  < 0.00001 0.931  < 0.00001 0.886  < 0.0001
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There are some discrepancies in current literature as 
to whether the SMA is affected by intravenous contrast. 
One study has shown that SMA may not be affected 
by the intravenous contrast though the SMD becomes 
higher [23]. Others suggest that both the SMA and SMD 
are slightly affected when using intravenous contrast [21, 
22]. One could speculate that the muscle quality may be 
falsely enhanced when the radiodensity is used in con-
trast-enhanced CT. Previously, others have been looking 
at single muscle groups of the thoracic region validating 
the method and correlated to the whole-body skeletal 
muscle mass using algorithms [18, 26]. However, one 
could argue that a single muscle group may not be rep-
resentative for the whole-body skeletal muscle mass or 
pathological changes. Furthermore, the skeletal muscle 
mass may rather be considered a continuum, and grading 
the severity of reduced muscle may be of higher impor-
tance than arbitrary cutoffs [25].

In our study, females had higher median SMD than 
males on all thoracic levels along with L3 level. A pos-
sible explanation could be due to the fixed intravenous 
contrast dose, and females are smaller than males, and 
females have a smaller blood volume to dilute the contrast 
medium and less tissue to be distributed to, and results in 
higher density [14]. In our study, the correlation between 
the SMD of each thoracic level to the L3 was strong; how-
ever, it varied from r = 0.526 at T2 to r = 0.890 at T10. 
However, as this is a proof-of-concept study, further stud-
ies with larger study populations are needed to elaborate 
factors on contrast distributions. Though, this study sug-
gests that the T10 level may be most favourable when 
SMD is assessed, thus indicating that it may be necessary 
to assess both the T5 for SMA and the T10 for SMD.

Previously, the focus has been on abdominal CT in 
creating references for skeletal muscle measures based 
on healthy individuals [9, 10]. Studies that have used 
thoracic CT have sparse information on the CT param-
eters, making it difficult to reproduce and transfer to 
clinical practice [18]. Furthermore, in some studies, there 
is scarce information on the presence of comorbidities 
which is problematic as a long list of comorbidities is 
known to affect the body composition or no information 
on ethnicity [9, 18, 19, 26]. Ethnicity has proven impor-
tant when assessing the body composition as significant 
ethnic differences have been addressed regarding the 
abdominal visceral fat. For example, Japanese popula-
tions have higher abdominal visceral fat relative to the 
abdominal subcutaneous fat compared to Caucasian 
which in part could explain the predisposition of meta-
bolic diseases in Japanese populations [27]. This calls for 
ethnicity to be incorporated into the clinical tool as well. 
Other well-known clinical tools (e.g., spirometry) have 
different normal ranges based on ethnicity [28].

The inter- and intra-rater agreement showed low bias as 
most of the differences showed a low mean difference with 
random fluctuations. This supports that there were small 
differences between raters and between first and second 
segmentation for each of the raters. This indicates that 
the muscle measuring technique is both valid and reliable 
in thoracic and abdominal areas based on the inter- and 
intra-rater agreement; however, there were a few outli-
ers in the inter-rater agreement which indicated that 
there was a trend that rater 1 had higher muscle measures 
than the rater 2 when there was a high mean. The same 
applied for the intra-rater agreement, where there was 
a trend that rater 1 measured higher muscle measures 
in the first segmentation than the second segmentation 
compared to rater 2. This could be due to the different 
time span between the first and second measure, as rater 
1 had 9 months between segmentations, whereas rater 2 
had 4 months between segmentations. One could specu-
late that level of training may influence the outcome. As 
the method is novel, no systematic training exists, which 
also may influence the outcome. The inter- and intra-
rater agreement results may be improved using systematic 
training sessions and exercises as proven favourable in 
both invasive procedures and surgical settings.

Limitations and methodological considerations
There are limitations to this study. This is intended as a 
proof-of-concept study to whether skeletal muscle mass 
and density assessed with thoracic CT were associated 
with assessments at the abdominal level. The number of 
patients excluded based on CT technical issues was nec-
essary to ensure compatibility between patients and elimi-
nate potential systematic errors and confounders regarding 
the method. As a result, the study population is small, and 
the findings concerning the muscle measures may not be 
generalizable to a larger population until a larger data set 
is available. However, this study may help set the basis for 
future studies by narrowing down thoracic areas strongly 
associated with the abdominal muscle area.

Due to the small study population, this study did not 
adjust for age or BMI which may have an influence on 
the outcome [1, 8, 22, 27]. As such, future studies should 
include a distinction between different age groups, gen-
der, BMI, and ethnicity [9, 10, 29, 30]. In addition, as this 
is a retrospective observational study, there is a risk that 
the study individuals may have undiagnosed comorbidi-
ties that could have affected the skeletal muscle mass. 
However, the risk is considered low as both medical 
records, prescriptions, and thoracic and abdominal CT 
have been assessed.

In the current version of the analysis software, images 
are manually downloaded from the picture archiving and 
communication system and transferred to the software 
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before analysis, which is time demanding. It will require 
further software improvements before it is applicable for 
clinical use. The time requirements could be reduced fur-
ther by applying fully automated software based on artifi-
cial intelligence, machine learning, and neural networks, 
as seen in other studies with abdominal segmentation 
[31, 32], thereby reducing the operator workload.

Conclusions
This study showed that there is an association between 
the skeletal muscle mass and density assessed by con-
trast-enhanced thoracic CT and abdominal CT. Further-
more, this study suggested that the T5 level may be the 
most favourable to assess the SMA, the T11 to assess 
SMI, and the T10 level to assess the SMD of the thorax 
when using contrast-enhanced thoracic CT compared to 
the L3. However, further studies are needed to validate 
this on a larger scale with consideration of whole-body 
muscle mass, muscle function, age, gender, and ethnicity.
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