
Froehlich et al. 
European Radiology Experimental            (2023) 7:21  
https://doi.org/10.1186/s41747-023-00331-2

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Comparison of gadolinium-based contrast 
agents for MR cholangiography in saline, blood 
and bile: a phantom study
Johannes M. Froehlich1, Leen Moussa2, Natalie Guirguis2, Andreas Gutzeit3,4, David Wu5,6,7, 
Sabine Sartoretti‑Schefer8, Dow‑Mu Koh9, Orpheus Kolokythas10 and Simon Matoori2*   

Abstract 

Background We compared T1‑ and T2‑weighted signal intensities of liver‑specific (gadoxetate, gadobenate) and 
non‑specific (gadoterate) gadolinium contrast agents (CAs) in a bile phantom.

Methods In a phantom study, gadoxetate, gadobenate, and gadoterate were diluted in saline, blood, and bile at 
different concentrations (0, 0.25, 0.5. 1, 2.5, 5, 10, and 25 mM) and imaged in a 3‑T magnetic resonance imaging 
(MRI) system using T1‑ and T2‑weighted sequences. The maximum signal intensities of CAs were compared for each 
sequence separately and across all T1‑weighted sequences using one‑way ANOVA.

Results Using T1‑weighted sequences, CA concentration‑dependent signal intensity increase was followed by 
decrease due to T2* effects. Comparing CAs for each sequence in bile yielded higher maximum signal intensities 
with gadobenate than gadoxetate and gadoterate using T1‑weighted spin‑echo (p < 0.010), multiecho gradient‑ and 
spin‑echo (p < 0.001), and T1‑weighted high‑resolution isotropic volume excitation (eTHRIVE) sequences (p < 0.010). 
Comparing across all T1‑weighted sequences in the bile phantom, gadobenate imaged using T1‑weighted turbo 
field‑echo (TFE) sequence showed the highest signal intensity, significantly higher than that using other CAs agents 
or sequences (p < 0.004) except for gadobenate and gadoxetate evaluated with three‑dimensional multiecho fast 
field‑echo (3D‑mFFE) and gadoxetate with T1‑weighted TFE sequence (p > 0.141). Signal reduction with CA concen‑
tration‑dependent decrease was observed on T2‑weighted images.

Conclusion In this bile phantom study of gadolinium‑based CA, gadobenate and gadoxetate showed high signal 
intensity with T1‑weighted TFE and 3D‑mFFE sequences, which supports their potential utility for contrast‑enhanced 
hepatobiliary MRI.

Key points  
• Contrast‑enhanced magnetic resonance (MR) cholangiography depends on contrast agent type, kinetics, and con‑
centration in bile,

• We compared signal intensities of three contrast agents in a bile phantom study.

• Gadobenate, gadoxetate, and gadoterate demonstrated different signal intensities at identical concentrations.

• Gadoxetate and gadobenate showed high signal intensities on T1‑weighted MR sequences.
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Background
Magnetic resonance (MR) cholangiography has gained 
broad acceptance for the evaluation of multiple biliary 
pathologies [1]. It is commonly used for the detection of 
choledocholithiasis, benign and malignant strictures, pri-
mary sclerosing or other forms of cholangitis, as well as 
for preoperative planning [1].

While MR cholangiography is often performed without 
contrast enhancement, there is an increasing interest in 
the use of hepatobiliary contrast agents such gadoxetate 
and gadobenate [1–4]. These contrast agents are linear, 
ionic, and hepatocyte-selective T1 weighted gadolin-
ium-based MR agents with a relatively high relaxivity 
[5, 6]. While the other linear MR contrast agents gado-
pentetate, gadodiamide, gadoversetamide were sus-
pended due to dechelation (transmetallation)-associated 
safety concerns by the European Medicine’s Agency in 
2017, gadoxetate and gadobenate remained on the mar-
ket in Europe with a restricted indication for hepato-
biliary MR [7]. In the United States, the Food and Drug 
Administration gave warning labels due to dechelation 
to all gadolinium-based contrast agents. In the Food and 
Drug Administration -approved label (as of 01/2023), 
gadoxetate is indicated for liver MR imaging (MRI), while 
gadobenate is indicated for MRI of the central nervous 
system and MR angiography. Gadoxetate and gadobenate 
are administered intravenously, taken up by hepatocytes 
(about 50% of gadoxetate dose and 3–5% of gadobenate 
dose) and excreted partly through the biliary system [5, 
6]. Both agents are actively transported into hepatocytes 
by organic anion transporter polypeptide B1 subtypes 
and subsequently excreted into biliary canaliculi by the 
canalicular multispecific organic anion transporter [5, 
6, 8]. Non-liver specific contrast agents such as gadoter-
ate lead to vascular and interstitial contrast enhance-
ment. Using gadoxetate and gadobenate, visualization of 
the biliary tree begins 10 to 100 min after injection and 
lasts for 1–4 h [1, 8]. These liver-specific contrast agents 
can provide both anatomical and functional information 
of hepatocytes and bile ducts. While the most common 
indication is the detection and characterization of focal 
liver lesions, contrast enhancement in the parenchyma 
and biliary system has been used to grade liver cirrhosis, 
for prognosis of acute-on-chronic liver failure, to detect 
bile ducts leaks after surgery, and to assess the biliary 
anatomy of liver donors [1, 9–16].

With the growing importance of contrast-enhanced 
MR cholangiography, there is a clinical need to under-
stand which contrast agent has the highest signal inten-
sity in bile. However, to the best of our knowledge, 
contrast agent signal intensities in bile are currently 
not reported in the literature. This gap in the literature 
complicates evidence-based contrast agent selection 

for contrast-enhanced MR cholangiography. Therefore, 
the focus of our phantom study was to determine and 
compare the signal intensities of two hepatobiliary con-
trast agents (gadoxetate, gadobenate) and an extracel-
lular agent (gadoterate) in bile, blood, and saline using 
clinically used MR pulse sequences. We hypothesize 
that these findings will support evidence-based selec-
tion of contrast agents and pulse sequences for contrast-
enhanced MR cholangiography.

Methods
Saline, blood, and bile phantoms
No Institutional Review Board approval or Informed 
Consent was needed for this phantom study.

The contrast agents gadoxetate (Primovist/Eovist, 
Bayer, Leverkusen, Germany), gadobenate (Multihance, 
Bracco, Milan, Italy), and gadoterate (Dotarem, Guer-
bet, Villepinte, France) were diluted in saline (saline 
phantom), anticoagulated ox (sex: male; age: 2  years; 
origin: Switzerland) blood (blood phantom) and ox (sex: 
male; age: 2  years; origin: Switzerland) bile (bile phan-
tom) at different concentrations (0, 0.25, 0.5. 1, 2.5, 5, 
10, 25  mM). They were imaged in a 3-T MR system 
(Ingenia, Philips Healthcare, Best, the Netherlands) using 
a phased-array 16-channel coil with the following experi-
mental setting: 2.0 mL of solution containing at least 90 
volume% of  sodium chloride  0.9%, blood, or bile, was 
put in 2 mL polypropylene tubes (diameter 10 mm, sur-
face area 79  mm2) in a sample holder (75 mm × 75 mm, 
capacity 25 tubes, Nalgene, Rochester, New York, NY, 
USA) submerged in water at room temperature (Fig.  1, 
Supplementary Fig. S1). Each condition was prepared in 
triplicates (n = 3). The images were analyzed using Osi-
riX DICOM viewer (Pixmeo SARL, Bernex, Switzerland). 
A round region-of-interest of approximately 30  mm2 was 
placed on each   vial. The median signal intensity of the 
region-of-interest was reported.

MR sequences
The pulse sequences were based on slightly modified 
standard clinical sequences provided by Philips for the 
3-T MR system and included a T1-weighted spin echo 
(SE) sequence, a T1-weighted turbo field-echo (TFE) 
sequence, a three-dimensional (3D) multiecho fast field-
echo (mFFE) sequence, a multiecho gradient- and spin-
echo (mGraSE) sequence, a short tau inversion-recovery 
(STIR) sequence, a 3D T1-weighted high-resolution iso-
tropic volume excitation (eTHRIVE) sequence, a two-
dimensional (2D) MIXED sequence, a T2-weighted turbo 
SE (TSE) sequence, and a fluid attenuated inversion-
recovery (FLAIR) sequence. The sequence parameters 
are reported in Table 1.
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Statistical analysis
The statistical calculations were carried out by Sigma-
Plot version 13.0 (SPSS Inc, Chicago, IL). The maxi-
mum signal intensity (i.e., mean of three highest signal 
intensities per condition) of the three contrast agents 
was calculated. First, the maximum signal intensity of 
the three contrast agents was compared for each pulse 
sequence separately using one-way ANOVA followed 
by a Tukey’s post-hoc test. Second, the maximum sig-
nal intensities were compared over all T1-weighted 
sequences in bile (T1-weighted SE, T1-weighted TFE, 
3D-mFFE, mGraSE, STIR, eTHRIVE) using a one-way 

ANOVA followed by a Tukey’s post-hoc test. A p-value 
of < 0.050 was deemed statistically significant. In the 
figures, significant differences between the three con-
trast agents are presented as follows:

* = significantly higher maximum signal inten-
sity of the contrast agent than both other contrast 
agents; +  = significantly higher maximum signal inten-
sity than the contrast agent with the lowest maximum 
signal intensity;

* or +  = p < 0.050;
** or +  +  = p < 0.010;
*** or +  +  +  = p < 0.001.

Fig. 1 Experimental set‑up. The vials containing contrast agents gadoterate (left column), gadobenate (middle column), and gadoxetate 
(right column) in saline (top row), blood (middle row), and bile (lower row) were placed in a sample holder and submerged in water at 
room temperature. The samples were then imaged using different sequences (here: fluid‑attenuated inversion‑recovery sequence) (a). The 
concentration of the contrast agents ranged from 0.25 to 25 mM, and each sample contained a control vial on the lower right with saline instead 
of the contrast agent (b)

Table 1 Pulse sequence parameters employed in this study

2D Two-dimensional, 3D Three-dimensional

Sequence Repetition time (ms) Echo time (ms) Flip angle 
(degrees)

T1‑weighted spin‑echo 600–700 10 70

T1‑weighted turbo field‑echo “shortest” “shortest” 8

3D multiecho fast field‑echo “shortest” 4.6 20

Multiecho gradient‑ and spin‑echo “shortest” “shortest” 90

Short tau inversion‑recovery 5,000 30 90

T1‑weighted high‑resolution isotropic volume excita‑
tion

“shortest” “shortest” 10

2D MIXED 920 (spin‑echo) 2,300 (inversion‑recovery) “shortest” 90

T2‑weighted turbo spin‑echo 3,000 80 90

Fluid‑attenuated inversion‑recovery 11,000 125 90
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Results
T1‑weighted pulse sequences
On T1-weighted pulse sequences, a contrast agent con-
centration-dependent increase in signal intensity was fol-
lowed by a plateau and a subsequent decrease due to T2 
and T2* effects (Figs. 2, 3, 4, and 5 Supplementary Figs. 
S2−S4, Supplementary Table S1).

First, we compared the maximum signal intensities 
of the three contrast agents for each pulse sequence. In 
saline, the maximum intensity of gadobenate was signifi-
cantly higher than gadoterate and gadoxetate with the 
T1-weighted SE (p < 0.001) and the eTHRIVE sequence 
(p < 0.010). No significant differences were observed 
between the maximum signal intensities of the con-
trast agents with the other sequences (p > 0.054). There 
was no significant difference in maximum relaxation 
time between the contrast agents with the 2D MIXED 
sequence (p = 0.516).

In blood, the maximum intensity of gadobenate 
and gadoxetate were higher than gadoterate with the 
T1-weighted SE sequence (p < 0.050). The maximum 
intensity of gadobenate and gadoxetate were higher 
than gadoterate with the T1-weighted TFE sequence 
(p < 0.050). The maximum intensity of gadobenate was 

higher than gadoxetate and gadoterate with the 3D mFFE 
sequence (p < 0.001). The maximum intensity of gado-
benate and gadoterate were higher than gadoxetate with 
the STIR sequence (p < 0.050). The maximum intensity of 
gadobenate and gadoxetate were higher than gadoterate 
with the eTHRIVE sequence (p < 0.050). No significant 
differences were observed between the maximum sig-
nal intensities of the contrast agents with the mGraSE 
sequence (p = 0.323).

In bile, the maximum intensity of gadobenate 
was higher than gadoxetate and gadoterate with the 
T1-weighted SE sequence (p < 0.010), and the maxi-
mum intensity of gadoterate was higher than gadox-
etate (p < 0.050). The maximum intensity of gadobenate 
and gadoxetate were higher than gadoterate with the 
T1-weigthed TFE sequence (p < 0.050). The maximum 
intensity of gadobenate was higher than gadoterate 
with the 3D-mFFE sequence (p < 0.050), and the differ-
ence between gadobenate and gadoxetate was not sig-
nificantly different (p = 0.098). The maximum intensity 
of gadobenate was higher than gadoterate and gadox-
etate with the mGraSE sequence (p < 0.001), and the sig-
nal intensity of gadoterate was higher than gadoxetate 
with this sequence (p < 0.050). The maximum intensities 

Fig. 2 Signal intensities of gadoterate, gadobenate, and gadoxetate in saline and biological fluids on T1‑weighted spin‑echo and turbo field‑echo 
MRI. Signal intensities of gadoterate, gadobenate, and gadoxetate at different concentrations in saline (a), blood (b), and bile (c) on T1‑weighted 
spin echo MRI. Signal intensities of gadoterate, gadobenate, and gadoxetate at different concentrations in saline (d), blood (e), and bile (f) 
on T1‑weighted turbo field‑echo sequence. * = significantly higher maximum signal intensity of the contrast agent than both other contrast 
agents; +  = significantly higher maximum signal intensity than the contrast agent with the lowest maximum signal intensity. * or +  = p < 0.050, ** 
or +  +  = p < 0.010; *** or +  +  +  = p < 0.001
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of gadobenate and gadoterate were higher than gadox-
etate with the STIR sequence (p < 0.010). The maximum 
intensity of gadobenate was higher than gadoxetate and 
gadoterate with the eTHRIVE sequence (p < 0.010). The 
maximum relaxation time of gadobenate and gadoter-
ate were higher than gadoxetate with the 2D MIXED 
sequence (p < 0.010).

Second, we compared the maximum signal inten-
sities of all contrast agents across T1-weighted SE, 
T1-weighted TFE, eTHRIVE, GRase, and STIR sequences 
in bile. The highest maximum signal intensity was 
observed for gadobenate with the T1-weighted TFE pulse 
sequence, which was higher than the intensities of all 
contrast agents with the eTHRIVE, GRase, T1-weighted 
SE, and STIR sequences, and the maximum intensity of 
gadoterate with the T1-weighted TFE and 3D-mFFE 
sequences (p < 0.004). However, in this comparison across 
all sequences, the maximum signal intensity of gado-
benate with the T1-weighted TFE sequence was nei-
ther significantly higher than maximum signal intensity 
of gadoxetate with the T1-weighted TFE sequence nor 
significantly higher than maximum signal intensity of 
gadoxetate and gadobenate with the 3D-mFFE sequence 
(p > 0.141).

To compare our results to the literature (see below), we 
also compared the signal intensities at a fixed contrast 
agent concentration of 0.25  mM in saline and blood on 
T1-weighted TFE MRI. In saline, we observed a higher 
signal intensity of gadobenate than gadoterate (p < 0.001) 
a higher signal intensity of gadoxetate than gadoterate 
(p < 0.001), and no significant difference between gado-
benate and gadoxetate (p = 0.188) on T1-weighted TFE 
MRI. In blood, where we observed a higher signal inten-
sity of gadobenate than gadoterate (p < 0.001) a higher 
signal intensity of gadoxetate than gadoterate (p = 0.001), 
and no significant difference between gadobenate and 
gadoxetate (p = 0.229) on T1-weighted TFE MRI.

T2‑weighted pulse sequences
In T2-weighted pulse sequences, signal intensities 
decreased with increasing contrast agent concentration 
(Fig. 6, Supplementary Fig. S5, Supplementary Table S1).

In saline, no significant differences among maximum 
contrast agent signal intensities were observed in the 
T2-weighted TSE and the FLAIR sequences (p > 0.111).

In blood, gadobenate and gadoterate were signifi-
cantly higher maximum contrast agent signal intensities 
than gadoxetate with the T2-weighted TSE sequence 

Fig. 3 Signal intensities of gadoterate, gadobenate, and gadoxetate in saline and biological fluids on three‑dimensional multiecho fast field‑echo 
(3D mFFE) and multiecho gradient‑ and spin‑echo (mGraSE) sequences. Signal intensities of gadoterate, gadobenate, and gadoxetate at different 
concentrations in saline (a), blood (b), and bile (c) on 3D‑mFFE sequence. Signal intensities of gadoterate, gadobenate, and gadoxetate at different 
concentrations in saline (d), blood (e), and bile (f) on mGraSE sequence. * = significantly higher maximum signal intensity of the contrast agent than 
both other contrast agents; +  = significantly higher maximum signal intensity than the contrast agent with the lowest maximum signal intensity. * 
or +  = p < 0.050, ** or +  +  = p < 0.010; *** or +  +  +  = p < 0.001
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(p < 0.010). The maximum contrast agent signal intensity 
of gadoterate was higher than gadoxetate and gadobenate 
with the FLAIR sequence (p < 0.001), and maximum sig-
nal intensity of gadobenate was higher than gadoxetate 
(p < 0.010).

In bile, maximum signal intensity of gadobenate 
was higher than gadoxetate with the T2-weighted TSE 
sequence (p < 0.050). No significant differences in maxi-
mum signal intensity were observed with the FLAIR 

sequence (p = 0.123). The results of intra-sequence com-
parisons of maximum signal intensities of contrast agents 
are summarized in Supplementary Table S1.

Discussion
In this study, we investigated the signal intensity of 
three contrast agents in a bile phantom and observed 
differences between contrast agents, contrast agent 
concentrations, and pulse sequences. The maximum 

Fig. 4 Signal intensities of gadoterate, gadobenate, and gadoxetate in saline and biological fluids on short tau inversion‑recovery (STIR) and 
T1‑weighted high‑resolution isotropic volume excitation (eTHRIVE) sequences. Signal intensities of gadoterate, gadobenate, and gadoxetate at 
different concentrations in saline (a), blood (b), and bile (c) on STIR sequence. Signal intensities of gadoterate, gadobenate, and gadoxetate at 
different concentrations in saline (d), blood (e), and bile (f) on e‑THRIVE sequence. * = significantly higher maximum signal intensity of the contrast 
agent than both other contrast agents; +  = significantly higher maximum signal intensity than the contrast agent with the lowest maximum signal 
intensity. * or +  = p < 0.050, ** or +  +  = p < 0.010; *** or +  +  +  = p < 0.001

Fig. 5 T1 relaxation time of gadoterate, gadobenate, and gadoxetate on 2D MIXED sequence. T1 relaxation time of gadoterate, gadobenate, and 
gadoxetate at different concentrations in saline (a), blood (b), and bile (c) on 2D MIXED sequence. * = significantly higher maximum signal intensity 
of the contrast agent than both other contrast agents; +  = significantly higher maximum signal intensity than the contrast agent with the lowest 
maximum signal intensity. * or +  = p < 0.050, ** or +  +  = p < 0.010; *** or +  +  +  = p < 0.001
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signal intensity of gadobenate with the T1-weighted SE 
sequence was higher than all other contrast agents and 
conditions except for gadobenate and gadoxetate with 3D 
mFFE and gadoxetate with the T1-weighted SE sequence 
(p < 0.004), which confirms the usefulness of gadobenate 
and gadoxetate for contrast-enhanced hepatobiliary MRI. 
To the best of our knowledge, this is the first study to 
determine and compare signal intensities of MRI contrast 
agents in a bile phantom.

In T1-weighted pulse sequences, we observed a con-
centration-dependent increase in signal intensity fol-
lowed by a decrease due to T2* effects which is in 
accordance with the literature [17]. Pulse sequence- and 
contrast agent-dependent differences were also observed. 
Comparing contrast agents for each pulse sequences 
separately yielded higher maximum signal intensi-
ties of gadobenate than gadoxetate and gadoterate with 
T1-weighted SE (p < 0.010), mGraSE (p < 0.001), and 
eTHRIVE sequences (p < 0.010) in bile.

In bile, we observed that the maximum signal intensity 
of gadobenate was higher than all other contrast agents 
and conditions except for gadobenate and gadoxetate 
with 3D-mFFE and gadoxetate with the T1-weighted SE 
sequence (p < 0.004). This finding complements recent 
reports which pointed to the usefulness of gadobenate-
enhanced biliary imaging using a T1-weighted gradient 

echo pulse sequence to stage liver cirrhosis and predict 
outcomes in acute-on-chronic liver failure [9, 10]. Nev-
ertheless, more studies are needed to determine whether 
gadobenate is the most suitable contrast agent for biliary 
imaging. In this study, we saw a strong contrast agent 
concentration dependence in signal intensities. Therefore, 
the contrast agent concentration in the biliary canaliculi 
will be an important factor determining the signal inten-
sity. The contrast agent concentration is likely related 
to the uptake of the contrast agent into the liver, which 
is higher for gadoxetate (about 50%) than gadobenate 
(3–5%) [5, 6], and the administered dose, which is lower 
for gadoxetate (0.025 mmol/kg body weight) than gado-
benate (0.1 mmol/kg body weight). To contextualize our 
findings, it is therefore important to note that multiple 
factors impact the observed signal intensity in MR chol-
angiography in the clinical setting: the inherent relaxivity 
of contrast agents in bile and the employed MR sequence 
(i.e., the focus of our study), and the concentration of the 
contrast agent in the bile canaliculi. The latter depends 
on the administered dose, and the amount and kinetics 
of contrast agent uptake into hepatocytes and excretion 
into bile canaliculi. This is ultimately also related to the 
functionality of the organic anion transporting polypep-
tides (OATP) uptake and multidrug resistance-associated 
protein 2 (MRP2) efflux transporters.

Fig. 6 Signal intensities of gadoterate, gadobenate, and gadoxetate in saline and biological fluids on T2‑weighted TSE and fluid‑attenuated 
(FLAIR) sequence. Signal intensities of gadoterate, gadobenate, and gadoxetate at different concentrations in saline (a), blood (b), and bile (c) 
on T2‑weighted turbo spin‑echo MRI. Signal intensities of gadoterate, gadobenate, and gadoxetate at different concentrations in saline (d), 
blood (e), and bile (f) on FLAIR sequence. * = significantly higher maximum signal intensity of the contrast agent than both other contrast 
agents; +  = significantly higher maximum signal intensity than the contrast agent with the lowest maximum signal intensity. * or +  = p < 0.050, ** 
or +  +  = p < 0.010; *** or +  +  +  = p < 0.001
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Previously, the relaxivities of gadoxetate, gadobenate, 
and gadoterate were compared in different media: Rohrer 
et  al. [18] found that the relaxivity of gadobenate was 
similar to gadoxetate, and that these two contrast agents 
exhibited higher relaxivities than gadoterate in water, 
plasma, and blood with a T1-weighted TSE sequence at 
1.5-T (blood) and 3-T (water, plasma) MRI. Moreover, 
Goetschi et al. [19] found higher relaxivity of gadoxetate 
compared with gadoterate in saline. To compare our 
results to these studies, we focused on a specific contrast 
agent concentration of 0.25  mM which is most compa-
rable to other literature reports. In saline, we observed 
a higher signal intensity of gadobenate than gadoter-
ate (p < 0.001) a higher signal intensity of gadoxetate 
than gadoterate (p < 0.001), and no significant differ-
ence between gadobenate and gadoxetate (p = 0.188) on 
T1-weighted TFE MRI. Analogous results were observed 
in blood, where we saw a higher signal intensity of gado-
benate than gadoterate (p < 0.001) a higher signal inten-
sity of gadoxetate than gadoterate (p = 0.001), and no 
significant difference between gadobenate and gadoxe-
tate (p = 0.229) on T1-weighted TFE MRI. Therefore, our 
results are in agreement with the literature [18, 19].

This study has several limitations. The main limitation 
is that typical contrast agent concentrations of gadoxetate 
and gadobenate in bile ducts could not be retrieved from 
the literature. Therefore, it is difficult to estimate which 
contrast agent will have the highest signal intensity in the 
clinical setting where the administered dose, degree and 
kinetics of uptake into hepatocytes, and kinetics of con-
trast agent secretion into the biliary system determine the 
concentration of contrast agent in bile. As the uptake into 
hepatocytes and the secretion into bile are mediated by 
OATP uptake transporters and MRP2 efflux transporters, 
respectively, these processes are highly time-dependent, 
impacted by co-morbidities (e.g., liver disease) and the 
use of medication that compete with the contrast agents 
for the hepatocyte uptake transporters (e.g., statins) [20, 
21]. Therefore, more clinical studies are warranted to 
study potential effects of genetics, race/ethnicity, sex and 
gender differences, co-morbidities, and medication use 
on biliary contrast agent concentrations. While it would 
be highly invasive to determine gadoxetate or gado-
benate concentrations in bile ducts by biopsy, MRI signal 
intensities or relaxation times of these contrast agents in 
bile could be useful to determine these concentrations. 
Position effects due to field inhomogeneities cannot be 
excluded despite the use of a phased-array 1- channel 
coil. Furthermore, only a 3-T scanner was used and other 
field strengths were not investigated. The biologic fluids 
originated from ox as human fluids were not available, 
and were stored at -25  °C prior to use. Moreover, slight 
changes in composition of biological fluids over the time 

of the experiment cannot be excluded despite tempera-
ture control and the use of an anticoagulant. Potential 
changes in composition will only affect inter-sequence 
comparisons and not intra-sequence comparisons, as 
all conditions were recorded at the same time in each 
sequence.

In this bile phantom study of gadolinium-based con-
trast agents, gadobenate and gadoxetate showed high 
signals with T1-weighted TFE and 3D mFFE pulse 
sequences, which supports their potential suitability for 
contrast-enhanced hepatobiliary MRI. Our study also 
shows a strong concentration dependence of the con-
trast agent signal intensity in bile. In the clinical setting, 
the contrast agent concentration in bile depends on the 
administered dose, liver uptake, and secretion into bile. 
Our findings indicate that more clinical studies are war-
ranted to compare biliary contrast agent enhancement 
patterns in the bile ducts of patients. As our study quan-
tifies the signal intensity of the two contrast agents in bile 
in a controlled in vitro environment, it could be a useful 
reference for future clinical studies that quantify contrast 
agent concentrations in the biliary system to investigate 
hepatocyte function and hepatobiliary diseases.

Abbreviations
2D  Two‑dimensional
3D  Three‑dimensional
eTHRIVE  T1‑weighted high‑resolution isotropic volume excitation
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mFFE  Multiecho fast field‑echo
mGraSE  Multiecho gradient‑ and spin‑echo
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