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Abstract 

Background:  Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease that can lead to cirrhosis and 
hepatic decompensation. However, predicting future outcomes in patients with PSC is challenging. Our aim was to 
extract magnetic resonance imaging (MRI) features that predict the development of hepatic decompensation by 
applying algebraic topology-based machine learning (ML).

Methods:  We conducted a retrospective multicenter study among adults with large duct PSC who underwent MRI. 
A topological data analysis-inspired nonlinear framework was used to predict the risk of hepatic decompensation, 
which was motivated by algebraic topology theory-based ML. The topological representations (persistence images) 
were employed as input for classification to predict who developed early hepatic decompensation within one year 
after their baseline MRI.

Results:  We reviewed 590 patients; 298 were excluded due to poor image quality or inadequate liver coverage, leav-
ing 292 potentially eligible subjects, of which 169 subjects were included in the study. We trained our model using 
contrast-enhanced delayed phase T1-weighted images on a single center derivation cohort consisting of 54 patients 
(hepatic decompensation, n = 21; no hepatic decompensation, n = 33) and a multicenter independent validation 
cohort of 115 individuals (hepatic decompensation, n = 31; no hepatic decompensation, n = 84). When our model 
was applied in the independent validation cohort, it remained predictive of early hepatic decompensation (area 
under the receiver operating characteristic curve = 0.84).

Conclusions:  Algebraic topology-based ML is a methodological approach that can predict outcomes in patients 
with PSC and has the potential for application in other chronic liver diseases.
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Key points

•	 Algebraic topology-based machine learning can 
extract informative features.

•	 This approach can indicate visual patterns of the liver 
associated with hepatic decompensation in patients 
affected with primary sclerosing cholangitis (PSC).
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•	 The novel workflow was validated on a multicenter 
cohort of PSC patients.

Background
Primary sclerosing cholangitis (PSC) is a rare, slowly pro-
gressive, and heterogeneous disease with a varied phe-
notypic spectrum, consisting of chronic cholestatic liver 
condition characterized by inflammation and fibrosis 
of the extra and/or intrahepatic bile ducts, which lacks 
effective medical therapy. It is strongly associated with 
inflammatory bowel disease. Over time, it can lead to 
progressive hepatic fibrosis and complications stemming 
from portal hypertension (i.e., hepatic decompensation) 
[1, 2]. Hence, predicting patient outcomes and the con-
duct of therapeutic clinical trials is essential. There is a 
limited portfolio of validated biomarkers that can be 
used in clinical practice to identify PSC patients at risk 
of adverse outcomes and for the conduct of clinical trials, 
either for patient stratification or as surrogate endpoints 
[2, 3].

Magnetic resonance imaging (MRI), particularly mag-
netic resonance cholangiopancreatography (MRCP) is 
routinely used to diagnose PSC and monitor for PSC-
related complications [4]. Qualitative MRI/MRCP 
prognostic scoring systems, generated by individual 
radiologists, are hampered by suboptimal performance, 
limited reproducibility, and poor generalizability [5–8]. 
Elastography is a quantitative MRI technology that can 
predict adverse outcomes in those with PSC. However, 
this technology is not widely available [9, 10]. The sever-
ity of intrahepatic bile duct dilation, quantified using 
MRCP images, correlates with markers of the Mayo PSC 
risk score. However, quantitative MRCP metrics has not 
been widely studied or demonstrated to predict out-
comes. Using laboratory data, a machine learning (ML) 
approach was able to predict adverse outcomes in those 
with PSC and performed better than other traditional 
predictive tools such as the Mayo PSC risk score [11]. 
However, it remains to be seen if quantitative ML from 
imaging could further enhance our ability to predict clin-
ically relevant events [12].

A potential quantitative technique that may prove 
advantageous for understanding PSC is topological data 
analysis. TDA is a modern method for evaluating large-
scale data that employs methodologies from geometry 
and algebraic topology [6, 7]. Complex relationships 
within multidimensional data can be retained and jointly 
considered by examining geometric and topological 
aspects of the data originating from various distance 
metrics placed on the data. Some important concepts 
and methods in algebraic topology include the notion 
of modeling data as a metric space (a set of points along 

with a measure of how apart any two points are), the defi-
nitions of what a simplex and simplicial complex are, the 
notion of filtrations, and the method of persistent homol-
ogy [13–15] (Supplementary file 1). TDA is already being 
used by researchers in a variety of domains, including 
computational biology, to discover new knowledge from 
massive datasets [16, 17], and indeed, numerous studies 
have shown the effectiveness of topological data analysis 
(TDA) in a variety of medical applications [13–15, 18].

Given this promising technique and the unmet need to 
better predict adverse outcomes in those with PSC, we 
sought to determine if MRI features analyzed by TDA, 
and algebraic topology-based ML can predict adverse 
outcomes in those with PSC.

Methods
Inclusion/exclusion criteria
Five centers participated in this study: Mayo Clinic 
Rochester, three Norwegian centers (University Hos-
pitals of Berge, Oslo, and Akershus), and the University 
of Toronto. The inclusion criteria for this study were a 
diagnosis of large duct PSC and availability of a contrast-
enhanced T1-weighted MRI sequence of the abdomen 
obtained in the axial plane [19]. Specifically, contrast-
enhanced T1-weighted MRI images in the delayed phase 
(after 3 or 5 minutes after the intravenous injection) were 
used. These T1-weighted images were obtained either as 
a three-dimensional liver acceleration volume acquisi-
tion (LAVA) sequence or a three-dimensional volumetric 
interpolated breath-hold examination (VIBE) sequence, 
depending on the MRI scanner (1.5 or 3 T) using con-
ventional extracellular contrast medium or hepatobil-
iary contrast medium (Supplementary file 1). MRI exams 
were performed between 2007 and 2018. Exams for a 
patient were excluded if they did not include the entire 
liver within their field of view or if they exhibited discon-
tinuous coverage of the liver due to the significant gaps 
between slices in their coverage of the liver.

Clinical data
Clinical information was collected at the time of the 
MRI. Generally, patients were followed in the clinic every 
6–12 months, and MRCP was performed annually. This 
included key laboratory tests including serum alkaline 
phosphatase expressed relative to that laboratory test’s 
upper limit of normal within 3 months of the baseline 
MRI. Hepatic decompensation was defined as the devel-
opment of ascites, hepatic encephalopathy, or variceal 
hemorrhage [12]. The baseline clinical features for the 
derivation and validation cohort were compared using 
the “CreateTableOne” function of the tableone R package 
(https://​www.​rdocu​menta​tion.​org/​packa​ges/​table​one/​
versi​ons/0.​13.2). Categorical variables were summarized 

https://www.rdocumentation.org/packages/tableone/versions/0.13.2
https://www.rdocumentation.org/packages/tableone/versions/0.13.2
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using counts and percentages and compared using χ2 
testing. Continuous variables were expressed as medians 
and interquartile ranges and compared with Wilcoxon 
rank sum testing.

Semiautomated liver segmentation
Liver segmentations were generated using a semiauto-
mated approach, involving an initial segmentation by a 
deep learning model followed by corrections by a human 
(Y.S.), if needed. All the segmentation was done by an 
informatics fellow, but the project was supervised by B.E., 
a board-certified radiologist with 28 years of experience, 
who saw some of the segmentations. For each patient, 
one large patch was constructed from 25 small patches 
containing primarily liver pixels (i.e., at least 80 percent 
of pixels falling within the liver) (Supplementary file 1).

Feature extraction
Adams et al. proposed persistence images as a means to 
vectorize persistence images for ML applications in 2017 
[20]. We chose their persistence image technique because 
of its ability to engage with a larger range of ML algo-
rithms. We extracted interval values from the persistent 
homology filtration (birth time and death time) and con-
structed a persistent image to utilize this information in 

the ML task (Supplementary file 1). The features of the 
persistence image were extracted using the local binary 
pattern (LBP) feature extractor. These features were used 
to train a decision tree classifier to predict whether the 
patient developed hepatic decompensation within a year 
or not [21]. We used persistence diagrams for visual pat-
tern representation.

After applying the semiautomated approach, we seg-
mented the whole liver and used an algorithm to create 
patches (blue box). We concatenate all the patches and 
then apply algebraic topology to generate the barcode 
(white box). We extracted all the interval values (birth 
and death values) with a diagonal identity line to create a 
persistence diagram and rotated diagram (green box) and 
then the persistent image. Using the persistent image, we 
extracted features for traditional supervised ML (Fig. 1).

ML model
The extracted features from the persistence image 
served as input for our classifier. We used scikit-learn 
(version 0.24.2) to train a decision tree model (sklearn.
tree.DecisionTreeClassifier) to discriminate MRIs from 
patients developing hepatic decompensation using a 
stratified k-fold cross-validation approach (k = 5). A 
patient was considered to have the outcome of interest 

Fig. 1  Workflow of algebraic topology-based machine learning with imaging signal as input
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if they were noted to have hepatic decompensation 
within 1 year from the baseline MRI. We used default 
parameters to train the model (criterion = gini; split-
ter = best; max_depth = none; min_samples_split = 
2; min_samples_leaf = 1; min_weight_fraction_leaf 
= 1; max_features = none; random_state = 33; max_
leaf_nodes = none; min_impurity_decrease = 0.0; 
min_impurity_split = 0; class_weight = none; ccp_
alpha = none). The metrics to evaluate our model were 
balanced accuracy, weighted F1 score, area under the 
receiver operating characteristic curve (AUROC), and 
average precision score.

Results
We reviewed 590 patients with PSC who underwent 
an MRI exam with the required sequences. Two hun-
dred ninety-eight individuals were excluded due to 
poor image quality or inadequate coverage of the liver, 
leaving 169 subjects that were included in the study. 
Fifty-four patients from Mayo Clinic comprised the 
derivation group (hepatic decompensation, n = 21; no 
hepatic decompensation, n = 33). The validation cohort 
included 115 subjects (hepatic decompensation, n = 
31; no hepatic decompensation, n = 84) from multiple 
centers (Mayo Clinic, n = 68; three Norwegian Cent-
ers, n = 41; Toronto, n = 6). The clinical features of the 
cohort are shown in Table 1.

The “derivation” group was used for the cross-valida-
tion analyses. The “validation cohort” served as the test 
data set.

Hepatic decompensation patterning
In topological data analysis, persistent homology is 
described via the persistence barcodes described above. 
There is a distinct barcode for each homology persistence 
vector space from which we are able to track the Betti 
numbers of the complexes for every value of ε [20].

The range of Betti numbers is relatively small (from 0 
to 50) in the patients developing hepatic decomposi-
tion within a year (Fig.  2a), whereas the range of Betti 
numbers is quite large (0–100) in those not developing 
hepatic decomposition (Fig. 2b). As a result, we focus on 
the differences between the patients developing hepatic 
decompensation within 1 year and those not developing 
hepatic decompensation within 1 year.

Betti numbers display a difference in geometrical pat-
tern between the two groups. General trends can be 
observed through visual inspection. Patients with hepatic 
decompensation within a year patients have higher inten-
sity values at lower persistence pixels and lower intensity 
values at higher persistence pixels. This shows that these 
patients have a clustered pattern (Fig. 3a). Those without 
hepatic decompensation within a year have a substan-
tially larger variation in their persistence pixel intensities, 
indicating greater variability in these patients (Fig. 3b).

ML classifier
Table 2 reports the results of the cross-validation analy-
sis in the derivation cohort. The decision tree model can 
discriminate between the two classes with a median (± 
median absolute deviation) of 0.80 (± 0.12) balanced 
accuracy, 0.70 (± 0.08) F1 score, 0.74 (± 0.04) average 
precision, and 0.80 (± 0.012) AUROC. We applied this 
algorithm to a separate multicenter cohort and obtained 
an AUROC of 0.84 (Fig. 4).

Discussion
We developed a multicenter, proof-of-concept study 
that illustrates the merits of algebraic topology-based 
ML in generating predictive models from MRI exams. 
This study demonstrates this approach can analyze a vast 
amount of imaging data, detect distinct imaging patterns 
in those with advanced disease, and accurately predict 
short-term outcomes in patients with PSC.

We observed unique imaging patterns in those patients 
who did and did not develop early hepatic decompensa-
tion. For example, the ranges of Betti numbers in those 
who developed hepatic decompensation patients were 
very small (from 0 to 50) compared to those without 
hepatic decompensation (from 0 to 100). Small Betti 
numbers represent very low persistence, whereas large 
Betti numbers indicate more persistent topological 

Table 1  Baseline characteristics of patients

Data are given as median [interquartile range] with the exception of the number 
and percentage of females and of patients with inflammatory bowel disease. For 
some patients, the MRI/MRCP which established their diagnosis of PSC was used 
in this study. The date of the MRI used in the study was time zero or the baseline. 
Therefore, the duration of PSC for some subjects was 0 years

MRI Magnetic resonance imaging, MRCP Magnetic resonance 
cholangiopancreatography, PSC Primary sclerosis cholangitis, SAP/ULN Serum 
alkaline phosphatase relative to the upper limit of normal within three months 
of the baseline magnetic resonance imaging

Derivation cohort/
training (n = 54)

Validation 
cohort (n = 
115)

p value

Females 21 (38.9%) 39 (33.9%) 0.619

Inflammatory bowel 
disease presence

49 (90.7%) 94 (81.7%) 0.166

Age (years) 38.5 [24.0, 52.8] 49.7 [32.3, 58.9] 0.019

PSC duration (years) 3.26 [0.41, 11.28] 0.32 [0.00, 4.69] 0.002

SAP/ULN 2.50 [1.26, 4.24] 1.72 [1.03, 3.07] 0.039

Total bilirubin (mg/dL) 0.90 [0.50, 2.90] 0.80 [0.50, 1.86] 0.624

Platelets (× 109/L) 267 [169, 326] 238 [167, 338] 0.800
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features. It is possible these pattern differences represent 
morphologic changes associated with advancing fibrosis 
and portal hypertension [22–24].

Surrogate markers that can predict disease severity and 
outcomes for patients with PSC are needed [2]. ML and 
quantitative MRI data are promising approaches to pre-
dict outcomes in these patients. Laboratory data analyzed 
with ML has been shown to predict hepatic decompensa-
tion and survival after liver transplant for patients with 
PSC [12, 25]. A fully automated deep learning algorithm 

was shown to be able to analyze MRCP images and accu-
rately detect patients with PSC compared to normal 
controls [26]. However, combining imaging and ML to 
predict outcomes in patients with PSC has not been con-
ducted to date.

In this study, the algebraic topology-based ML 
approach used MRI data to create a model that predicted 
early hepatic decompensation. This algorithm continued 
to perform well when it was applied to a separate mul-
ticenter, international cohort (AUROC 0.84). Clinical 

Fig. 2  A barcode representation of hepatic decompensation status within a year. The horizontal axis line corresponds to the parameter ɛ, and the 
vertical axis line is the ordering of the homology generators. Note that the vertical placement is only introduced for display and does not have 
any intrinsic meaning. a Patients with hepatic decompensation within a year group exhibit Betti numbers typically between 0 and 50. b Patients 
without hepatic decompensation exhibit Betti numbers between 0 and 100. With the red box-based indicator, we can see a clear difference 
between the 1-dimensional homologies durations in both categories
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Fig. 3  A persistence image representation of hepatic decompensation within a year. Persistence image is showing topologic data analysis stable 
vectorization for both (a) patients developing hepatic decompensation within a year and (b) patients not developing hepatic decompensation 
within a year
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applications for TDA and disease detection are emerging 
[16, 27–29]. To our knowledge, this is the first study to 
apply an ML algorithm based on algebraic topology and 
MRI data to predict the outcomes in patients with liver 
disease. This methodological approach may have the 
potential for the detection of other PSC-related compli-
cations such as cholangiocarcinoma and applications in 
other chronic liver diseases that are more common than 
PSC such as non-alcoholic fatty liver disease.

This study has several limitations. First, while our 
algorithm was validated in a multicenter cohort, it 
will be important to apply this model in larger studies 
given the heterogeneous disease spectrum associated 
with PSC and determine if this algorithm can perform 
well when there is incomplete image coverage of the 
liver or MRI exams that used series beyond what we 
required to train and validate the model. Second, as the 
first step in this proof-of-concept application of topo-
logical data analysis-based ML with imaging data, this 
model was designed to predict short-term outcomes. 
Future studies are needed to determine this model’s 
predictive performance for longer-term outcomes and 

if the incorporation of other clinical variables could 
enhance the model’s performance. Third, laboratory 
data was unavailable for many subjects and we were 
unable to compare the performance of our approach 
to other predictive markers such as the Mayo PSC risk 
score. Fourth, a relevant number of patients had to be 
excluded due to image quality, often due to the breath-
hold nature of images leading to large discontinuities. 
Improved MRI methods may help to alleviate this chal-
lenge. Last, segmentation was semi-automated which 
requires expertise and can be time-consuming. Hence, 
future studies are needed to develop a fully automated 
approach to segmentation.

In summary, using topological data analysis-based 
ML, we discovered distinct patterns from MRI exams 
in those with PSC which enabled us to distinguish indi-
viduals who experienced early hepatic decompensation. 
The ability of this technology to create a persistent image 
that graphically characterizes the structural information 
derived from TDA has the potential for diverse diagnos-
tic and prognostic clinical applications.

Table 2  Median (± median absolute deviation) values for metrics obtained during a 5-fold stratified cross-validation evaluation of the 
decision tree classifier in the derivation cohort

AUROC Area under the receiver operating

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Median (± median 
absolute deviation)

Balanced accuracy 0.8 0.91 0.67 0.67 0.8 0.80 (± 0.12)

F1 score 0.8 0.90 0.69 0.69 0.77 0.70 (± 0.08)

Average precision 0.74 0.93 0.69 0.69 0.81 0.74 (± 0.04)

AUROC 0.8 0.91 0.67 0.67 0.80 0.80 (± 0.12)

Fig. 4  Receiver operating characteristic curve for validation data
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