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Enhancing the stability of CT radiomics 
across different volume of interest sizes using 
parametric feature maps: a phantom study
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Abstract 

Background:  In radiomics studies, differences in the volume of interest (VOI) are often inevitable and may confound 
the extracted features. We aimed to correct this confounding effect of VOI variability by applying parametric maps 
with a fixed voxel size.

Methods:  Ten scans of a cup filled with sodium chloride solution were scanned using a multislice computed 
tomography (CT) unit. Sphere-shaped VOIs with different diameters (4, 8, or 16 mm) were drawn centrally into the 
phantom. A total of 93 features were extracted conventionally from the original images using PyRadiomics. Using a 
self-designed and pretested software tool, parametric maps for the same 93 features with a fixed voxel size of 4 mm3 
were created. To retrieve the feature values from the maps, VOIs were copied from the original images to preserve 
the position. Differences in feature quantities between the VOI sizes were tested with the Mann-Whitney U-test and 
agreement with overall concordance correlation coefficients (OCCC).

Results:  Fifty-five conventionally extracted features were significantly different between the VOI sizes, and none of 
the features showed excellent agreement in terms of OCCCs. When read from the parametric maps, only 8 features 
showed significant differences, and 3 features showed an excellent OCCC (≥ 0.85). The OCCCs for 89 features substan‑
tially increased using the parametric maps.

Conclusions:  This phantom study shows that converting CT images into parametric maps resolves the confounding 
effect of VOI variability and increases feature reproducibility across VOI sizes.
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Key points

•	 Parametric maps provide a method to increase the 
reproducibility of radiomic features.

•	 The confounding effect of the variability of volume of 
interest is reduced by using a fixed voxel size.

•	 Visualising the features in parametric maps can pro-
vide insights into their behaviour.
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Background
Since 2012, radiological images have been analysed 
with radiomics. The underlying rationale is that clini-
cal images contain quantitative information, reflecting 
the underlying pathophysiology of the examined tissue 
[1, 2]. The image substructures are analysed mathe-
matically, resulting in quantifiable features with differ-
ent levels of complexity [3]. The standard approach is 
to correlate the feature quantity to clinical endpoints 
such as tumour phenotypes, treatment response, or 
survival [4–7]. Although numerous publications sug-
gest different features or radiomics signatures as help-
ful decision-making tools, radiomics are not applied in 
clinical routine until today [8].

The lack of reproducibility is considered a major 
drawback of radiomics. All steps around feature 
extraction may influence their quantity: image acqui-
sition and reconstruction parameters, segmentation, 
and applied software [3, 9–18]. Noise is furthermore 
presumed to fundamentally affect radiomic features 
derived from computed tomography (CT) images [19]. 
The image biomarker standardisation initiative, IBSI, 
an international collaboration, attempts to standardise 
radiomic feature calculation concerning definition and 
nomenclature [20]. Still, they did not provide guidelines 
for feature calculation settings [21].

Recent studies emphasised that the findings of radi-
omic studies may also be caused or influenced by dif-
ferences in the volume-of-interest (VOI) size. For 
example, Traverso et  al. [22] investigated 841 CT-
derived radiomic features from head and neck and lung 
cancers and identified a correlation with the tumour 
volume in almost 30% of the features. Another CT 
study concerning radiation-induced lung disease found 
11 of 27 textural features strongly influenced by volume 
sizes in simulated tumour volumes in the contralat-
eral, nonaffected lung parenchyma [23]. And also, the 
developers of PyRadiomics, a software tool to extract 
radiomic features, already state that the size of the seg-
mented volume confounds different first-order features 
due to the underlying mathematical calculations [24].

In 2021, Kim et al. introduced their tool for creating 
parametric maps [25]. The basic principle is to calcu-
late maps for the whole image by dividing it into vox-
els with a fixed size. This way, all features are calculated 
for VOIs (i.e., each single voxel of the parametric map) 
of the same size. The results are stored in parametric 
maps with the same spatial information as the original 
image, and feature values can be directly recovered the 
same way one would measure Hounsfield units in any 
standard image viewer. On the contrary, when perform-
ing a conventional extraction, features are calculated 

for the entire segmented volume, where the size of the 
underlying VOI can vary.

We, therefore, aimed to explore an approach to correct 
the confounding effect of VOI variability of CT-derived 
radiomics by preprocessing the images into parametric 
maps before feature extraction. The stability of the radi-
omic features across different VOI sizes was compared 
between the conventional radiomic feature extraction 
from the original CT images and the feature extraction 
from the parametric maps.

Methods
Phantom and CT scanning details
The concept of the water phantom was already published 
in 2021 [26]. We used a plastic cup filled with 100 mL 
sodium chloride as the imaging phantom. Its homog-
enous structure ensured that all measured effects were 
evoked by the altering VOI size and not alterations of the 
inner texture. CT images were acquired on a 320-detec-
tor row CT scanner (Aquilion ONE, Canon Medical Sys-
tems, Otawara, Japan) using the small field of view. The 
phantom was scanned ten times to prevent effects by 
outliers. To simulate conditions of repeated examina-
tions with slightly varying positioning, the phantom was 
placed in the isocentre, removed after each scan, and 
repositioned for the subsequent acquisition. Scan param-
eters are shown in Table 1.

Conventional feature extraction
Spherical VOIs were drawn into the centre of the phan-
tom of all ten scans using 3D Slicer (3D Slicer, Version 
4.10.0, http://​www.​slicer.​org), as shown in Fig.  1. VOI 
diameters were set to 4, 8, and 16 mm because their size 
should be double and four times the voxel size of the 
parametric maps. A voxel size of 4 mm3, on the other 
hand, was chosen because the largest VOI should still 
be safely placeable centrally in the phantom, limiting the 

Table 1  CT scanning details

kVp Peak kilovoltage, mA Milliampere

Parameter

Tube voltage (kVp) 120

X-ray tube current (mA) 50

Exposure time (s) 0.5

Single collimation width 0.5

Total collimation width 100

Reconstruction kernel Body

Slice thickness (mm) 0.5

Pixel spacing (mm) 0.430/0.430

Matrix 512 × 512

Field of view (mm) 220 × 220

http://www.slicer.org
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maximum VOI size to 16 mm in diameter. All features 
available in PyRadiomics (Version 3.0.1) [27] except for 
the shape features were extracted (settings as suggested 
by the developers [24], with binWidth 25, voxelArray-
Shift 1000, and correctMask true). We excluded shape 
features from our analysis, as their behaviour at dif-
ferent VOI sizes is obvious. A total of 93 features were 
extracted, 18 first-order features (energy, total energy, 
entropy, minimum, maximum, mean, median, inter-
quartile range, range, mean absolute deviation, robust 
mean absolute deviation, root mean squared, skew-
ness, kurtosis, variance, uniformity, 10th percentile, and 
90th percentile). The second- and higher-order feature 
classes comprised the following: 24 grey level co-occur-
rence matrix (GLCM), 14 grey level dependence matrix 
(GLDM), 16 grey-level run-length matrix (GLRLM), 16 
grey level size zone matrix (GLSZM), and 5 neighbour-
ing grey tone difference matrix (NGTDM).

Calculating the parametric maps
Because the calculation of the parametric maps requires 
considerable computing power, the tool by Kim et al. [25] 
was adapted to run on Google Colaboratory (https://​colab.​
resea​rch.​google.​com). This significantly shortened the com-
putation time and enabled execution in the background. 
This step, however, went against the initially intended con-
cept of ease of use, although it offered the aforementioned 
advantages for the current study. The voxel size was set to 4 
mm to match the smallest VOI that was considered for the 
feature extraction. The script for Google Colaboratory can 
be found in the supplementary material (textfile S1).

Feature retrieval from the parametric maps
Maps were computed for every feature. The differ-
ently sized VOIs used for the conventional extraction 

were copied onto the maps to maintain their position, 
as shown in Fig. 2. PyRadiomics was then again used to 
retrieve the feature value by only considering the mean.

Statistical analysis
Statistical tests were performed using R (version 3.5.1) [28]. 
We performed a univariate analysis with a pairwise Mann-
Whitney U-test with Bonferroni correction to assess differ-
ences between the varying VOI sizes (4 and 8 mm, 4 and 
16 mm, and 8 and 16 mm VOIs). A p-value < 0.05 was con-
sidered for statistical significance. The overall concordance 
correlation coefficients (OCCC), according to Lin et al. and 
Barnhart et al. [29–31], were calculated to assess the mul-
tivariable agreement between various variables of interest 
using the epiR package for R. We considered features with 
an OCCC ≥ 0.85 as stable, as this cutoff had been proposed 
in a recent study regarding feature reproducibility [18]. We 
calculated OCCCs once to assess agreement among the 
VOI sizes 4, 8, and 16 mm (OCCCs4–16) and once for the 
VOI sizes 8 and 16 mm (OCCCs8,16). Statistical testing was 
applied to the results of the conventional feature extraction 
and the results of the parametric maps.

Results
Conventional features
Conventionally extracted, 55 features showed significant differ-
ences between the VOI sizes, thereof 8 first-order features (p 
≤ 0.04). All OCCCs showed poor agreement (< 0.85). Detailed 
results are listed in the supplementary material (Table S2).

Parametric maps
None of the features showed significant differences when 
we compared results for VOI diameters of 4 and 8 mm. 

Fig. 1  Computed tomography images of the phantom and volume-of-interest (VOI) placement. Differently sized VOIs are drawn into the centre of 
the phantom. a shows a VOI with 4 mm in diameter, b with 8 mm, and c with 16 mm

https://colab.research.google.com
https://colab.research.google.com
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For VOI diameters of 8 and 16 mm, we observed signifi-
cant differences for 8 features (first-order 10th percen-
tile, first-order minimum, first-order variance, GLDM 
large dependence high grey level emphasis, GLDM large 
dependence low grey level emphasis, long-run low grey 
level emphasis, GLSZM small area low grey level empha-
sis, NGTDM busyness). For VOI diameters of 4 and 16 
mm, a significant difference was observed for only one 
feature (first-order 10th percentile). Figure 3 shows box-
plots for the features first-order maximum and glszm 
small area emphasis illustrating the decrease in signifi-
cant differences for these features when extracted from 
the parametric maps.  The OCCC of 88 features across 
VOI sizes of 4, 8, and 16 mm and of 89 features across 
8 and 16 mm increased when we compared paramet-
ric maps with conventional features. Furthermore, the 
OCCC​8,16 showed an excellent agreement for three fea-
tures (first-order 90th percentile, GLCM cluster shade, 
GLRLM nonuniformity). Figure  4 shows the increas-
ing agreement of the OCCCs of gldm and glrlm features 
when features were extracted from parametric maps. The 
results of statistical comparisons are provided in supple-
mentary material S3. An overview of OCCC values for 
conventional features and parametric maps is given in 
supplementary materials S4 and S5 (Table S4 for values 
of OCCC​4–16 and S5 for values of OCCC​8,16).

Discussion
The results of the present study show that converting CT 
images into parametric maps before extracting radiomic 
features almost resolves significant differences caused 
by different VOI sizes. In addition, there is a substantial 
increase in the stability across VOI sizes, as indicated by 
the improvement of the OCCC values.

When extracted from the original CT data, many fea-
tures showed significant differences between the three 
VOI sizes, although they were derived from the same tex-
ture. Transferred to a radiomic study, this could simulate 
a false correlation with a clinical endpoint only by includ-
ing differently sized VOIs, increasing the demand for a 
control tool for the VOI confounding effect. Considering 
our findings for VOIs from 4 and 8 mm, such false results 
could be avoided if parametric maps were used.

The software tool by Kim et al. [25] that we applied dis-
sembles an image into voxels of a fixed size. The feature is 
then calculated for each voxel, and the brightness of the 
voxel in the map reflects the feature quantity at the same 
position as in the original image [25]. Hence, we can 
quickly and directly retrieve the feature quantity from the 
map by drawing a region of interest or VOI. As features 
are calculated for voxels of the same size, any effects due 
to different VOI sizes are eliminated. This may not only 
affect obvious volume confounding but may also reduce 
the impact of other disturbing factors, such as artifacts, 
which can alter the results by producing outliers. When 
directly extracted from a radiological image, a single out-
lier in the segmented volume may already have significant 
impact. Applying the parametric maps, outliers then only 
affect individual voxels and no longer the entire VOI. For 
example, GLCM and GLRLM features are prone to outli-
ers [32], and these feature classes showed a considerable 
increase in reproducibility when derived from the para-
metric maps (for the GLRLM features, see Figs. 3 and 4).

In this context, it is also interesting that, in particular, 
the number of significantly different features between the 
VOI sizes of 4 and 8 mm was reduced. Since the voxel 
size was set to 4 mm3, it is conceivable that the reduc-
tion of confounding factors for VOIs of twice the voxel 

Fig. 2  Extraction of feature quantity from parametric maps. Slices of the parametric maps of the first-order feature skewness are shown. We copied 
volumes of interest (VOIs) with 4 (a), 8 (b), and 16 (c) mm diameter from the conventional feature extraction onto the maps. Feature quantities, 
visualised by the map, were extracted with PyRadiomics using the mean value of the VOIs



Page 5 of 9Jensen et al. European Radiology Experimental            (2022) 6:43 	

size (i.e., up to 8 mm) has a greater effect than for VOIs 
of four times the voxel size. If we consider a 4-mm VOI 
placed exactly in the centre of a 4-mm voxel, quantities 
are only defined by this voxel. And if an 8-mm VOI is 
placed in the centre of the same voxel, approximately 24% 
of its volume is already defined by the same voxel (i.e., 
the cubic voxel of 4-mm edge length within the spherical 
VOI of 8 mm in diameter). Considering the 16-mm VOI, 
however, this share amounts for only approximately 3%.

Other groups have reported comparable results regard-
ing the normalisation of voxel size before feature calcula-
tion. Shafiq-ul-Hassan et al. [33, 34] improved the stability 

of radiomic features by normalisation of voxel size of the 
underlying image. Among other methods, also Larue et al. 
[35] and Ligero et  al. [36] attempted to increase fea-
ture robustness by resampling to isometric voxels. Our 
approach, however, is different. We calculate features for 
voxels of a fixed size without altering the original image 
data beforehand to produce parametric maps, and feature 
values are later retrieved from these maps. The approaches 
by Shafiq-ul-Hassan et  al. [33, 34], Larue et  al. [35], and 
Ligero et al. [36] normalise or resample the pixels/voxels of 
the original image, and still, the segmented volume is con-
sidered as a whole for the feature calculation.

Fig. 3  Boxplots of features extracted conventionally and from parametric maps. Exemplary boxplots of the first-order feature maximum and 
the higher-order feature GLSZM small area emphasis across the different volume-of-interest (VOI) sizes. The left column shows boxplots of the 
conventional feature extraction with a wide variety of results across the VOI sizes, affecting the median. The same features are shown on the 
right, but values were retrieved from the parametric maps. Please also note the range on the y-axis. Boxplots for all features are provided in the 
Supplementary material (Fig. S6 contains boxplots of conventionally extracted features and Fig. S7 of extraction from parametric maps)
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Another viable approach was presented by Lu et  al. 
[37], who aimed to establish a CT radiomics signature 
of renal clear cell carcinoma and detected radiomic 
features impacted by tumour size. They suggested a 
stepwise correction for features susceptible to different 
tumour volumes, excluding 473 of the initially included 
1,160 features. The stepwise elimination of nonrepro-
ducible features as a plausible concept was also applied 
in other studies [3, 38]. Still, a radiomics signature 
across different studies is not applicable if decisive fea-
tures in one cohort are not reproducible in another 
setting. Roy et al. [39] investigated a significant impact 
of tumour volume on radiomic features in breast can-
cer lesions on magnetic resonance imaging. They 
attempted to correct for volume dependency by investi-
gating the correlation of the feature with the volume. If 
the correlation was linear, they normalised the feature 
by dividing it by tumour volume and by multiplying it, 
if the feature was inversely proportional. Regarding the 
nonlinear correlated features, a principal component 

analysis aiming to identify a radiomic signature that is 
volume independent was performed. Following dimen-
sion reduction, some features still correlated to tumour 
volume [39]. Hence, volume dependency in the design 
of studies with radiomic analysis as an endpoint has to 
be emphasised when including tumours with different 
volumes [39].

Although the presented approach to eliminate vol-
ume dependency shows promising results, the following 
limitations have to be considered. It is time-consuming 
to translate a complete CT volume into maps for every 
single feature. In clinical routine, calculating maps for all 
features, e.g., for a whole-body scan, would require a con-
siderable amount of computing power. As a reasonable 
solution, only maps of those features enhancing a spe-
cific diagnosis could be calculated by implementing pre-
existing study results. However, if sufficient computing 
power for calculation of all features maps was available, a 
quick assessment of the feature quantity for other lesions 
or structures in the image becomes feasible, as the direct 

Fig. 4  OCCC​8,16 of higher-order features: conventional and parametric map extraction. Barplots of GLDM and GLRLM features are shown. The 
green bars illustrate the OCCC​8,16 values of the conventional feature extraction. The red bars depict the OCCC​8,16 values when extracted from the 
parametric maps. The red line at 0.85 indicates excellent agreement. The OCCCs from parametric maps show a substantial increase in stability across 
the 8 and 16 mm VOI diameters (Supplementary Fig. S8 contains barplots of the OCCC​4–16 values of all features and Fig. S9 of the OCCC​8,16 values of 
all features). OCCC​, Overall concordance correlation coefficient; OCCC​4–16, OCCC among the 4-, 8-, and 16-mm sizes of volumes of interest; OCCC​8,16, 
OCCC between the 8- and 16-mm sizes of volumes of interest
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readout does not require further software steps. Further-
more, the extraction from the parametric maps improved 
the concordance, as shown by OCCC values. Yet, only 
three features actually yielded an excellent OCCC​8,16. An 
increase in OCCC values of all features to at least 0.85 
would have been desirable. Still, using the maps could 
safely ban significant differences between the differently 
sized VOIs for all but 8 features.

Another aspect of the parametric maps compared 
to conventional extraction is that different anatomical 
structures can be contained in one voxel. This is one of 
the reasons why the results from the maps and a con-
ventional extraction will not be the same, although 
some features show concordant results [25]. For clini-
cal use, this would have to be taken into consideration 
when selecting the voxel size and should be evaluated in 
further studies.

Finally, even though it is a by-product of this study, 
we noted that visualisation of parametric maps seems 

to help better understand the behaviour of textural 
features. For example, in some of the maps shown in 
Fig.  5, the lines in extension of interfaces and edges 
propagate beyond the phantom through the entire 
image. Corresponding effects can be expected in a 
clinical CT examination, but with innumerable inter-
faces and edges. To correct radiomic features for such 
complex effects seems extremely difficult. However, as 
already discussed above, maps with a fixed voxel size 
may also reduce the impact of other confounding fac-
tors besides volume.

In conclusion, converting CT images into paramet-
ric maps before extracting radiomic features increases 
reproducibility across VOI sizes. Furthermore, paramet-
ric maps can prevent incorrect significant results attrib-
utable to varying VOI sizes. The maps could furthermore 
visually elucidate complex phenomena of the features 
throughout the entire image.

Fig. 5  Exemplary parametric maps. The original computed tomography scan of the phantom is shown in the left upper corner (a). The exemplary 
maps represent the quantity of the respective feature. The higher the feature quantity for a voxel, the brighter the voxel appears on the map. The 
map of GLSZM small area emphasis (f) illustrates that the feature quantity of the background is almost similar to the body of the phantom. In the 
maps of entropy (b), uniformity (c), GLCM IDMN (d), and GLRLM run percentage (e), lines appear in the extension of edges and interfaces of the 
phantom. A high signal in the background can also be observed
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