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Abstract 

Magnetic resonance imaging (MRI) is an important part of breast cancer diagnosis and multimodal workup. It pro‑
vides unsurpassed soft tissue contrast to analyse the underlying pathophysiology, and it is adopted for a variety of 
clinical indications. Predictive and prognostic breast MRI (P2‑bMRI) is an emerging application next to these indica‑
tions. The general objective of P2‑bMRI is to provide predictive and/or prognostic biomarkers in order to support 
personalisation of breast cancer treatment. We believe P2‑bMRI has a great clinical potential, thanks to the in vivo 
examination of the whole tumour and of the surrounding tissue, establishing a link between pathophysiology and 
response to therapy (prediction) as well as patient outcome (prognostication). The tools used for P2‑bMRI cover a 
wide spectrum: standard and advanced multiparametric pulse sequences; structured reporting criteria (for instance 
BI‑RADS descriptors); artificial intelligence methods, including machine learning (with emphasis on radiomics data 
analysis); and deep learning that have shown compelling potential for this purpose. P2‑bMRI reuses the imaging data 
of examinations performed in the current practice. Accordingly, P2‑bMRI could optimise clinical workflow, enabling 
cost savings and ultimately improving personalisation of treatment. This review introduces the concept of P2‑bMRI, 
focusing on the clinical application of P2‑bMRI by using semantic criteria.
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Key points

• Magnetic resonance imaging (MRI) is an essential 
imaging modality for the assessment of breast dis-
eases; it investigates the entire tumour volume in 
vivo as well as the surrounding tissue and the whole 
breast(s) providing imaging biomarkers for both pre-
diction and prognostication.

• Predictive breast MRI may establish the link between 
imaging information and therapeutic decision-mak-
ing.

• Prognostic breast MRI may enable us to foresee the 
patient outcome.

• Predictive and prognostic breast MRI (P2-bMRI) 
reuses already performed MRI examinations and 
does not require additional invasive tissue sampling 
or potentially expensive analytic procedures.

• P2-bMRI promises great benefits to clinical work-
flow, allowing cost savings and personalisation of 
treatment.

Background
Magnetic resonance imaging (MRI) represents an 
important part of multimodal breast imaging [1–6]. 
Based on three-dimensional multiparametric imaging, 
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it provides high soft tissue contrast enabling functional 
insights into the pathophysiology of breast disease [2, 
6]. Such qualities translate into its unsurpassed sensi-
tivity and negative predictive value [7, 8].

Multiple indications to perform MRI in clinical prac-
tice are established and may be summarised by few key 
questions of breast imaging: “Is there a lesion?” (detec-
tion in both screening and diagnostic scenarios); “Is 
the lesion malignant?” (characterisation and problem-
solving), “Where is the lesion located? Are there are 
other suspicious ipsilateral or contralateral lesions? 
How much is the disease extended in relation with the 
breast volume?” (preoperative locoregional staging), 
and “Is the tumour responding to neoadjuvant ther-
apy?” (treatment monitoring) [3, 4, 9–11]. These clini-
cal indications are mostly accepted worldwide. The only 
exception concerns the role of breast MRI in preop-
erative locoregional staging. The final results of a large 
multinational investigation (the MIPA study) recently 
provided important real-world data on this matter [10, 
12], but this indication remains a matter for debate.

Predictive and prognostic breast MRI (P2-bMRI) 
is an emerging application next to these indications. 
Generally, P2-bMRI may be approached as an umbrella 
term summarising tools aimed at one general objective. 
Such general objective of P2-bMRI is to provide predic-
tive and/or prognostic MRI biomarkers. Such imaging 
biomarkers may ultimately support the personalisa-
tion of breast cancer treatment [13]. P2-bMRI applies 
a wide spectrum of tools to achieve this general objec-
tive: standard and advanced multiparametric pulse 
sequences, structured reporting criteria (for instance 
BI-RADS descriptors), artificial intelligence methods, 
including machine learning (with emphasis on radiom-
ics data analysis), and deep learning that have shown 
compelling potential for this purpose [14–19].

P2-bMRI is different to traditional biomarkers; it 
does typically not require additional patient examina-
tions but recycles imaging data already available from 
routine breast MRI [20, 21]. Accordingly, P2-bMRI may 
transform breast MRI into a one-stop shop examina-
tion, hence providing both diagnostic and predictive/
prognostic information. Already now, MRI is routinely 
performed in many state-of-the-art breast imaging 
units, for example for preoperative staging. In this case, 
data required for P2-bMRI are already available in an 
great number of patients [3, 9]. Whereas alternative 
biomarkers typically rely on invasive tissue sampling 
and may require potentially expensive analytical proce-
dures, this is not the case for P2-bMRI [20–22]. Thus, 
P2-bMRI holds great promises related to patient work-
flow, treatment personalisation, and cost-effectiveness 
of breast cancer treatment.

This narrative review introduces the concept of 
P2-bMRI and presents its potential advantages. Tools 
available for P2-MRI are discussed. Hereby, special focus 
is set on the clinical application of P2-bMRI by using 
semantic criteria.

The role of P2‑bMRI in the perspective of P4 
medicine
Personalised, predictive, preventive, and participatory 
(P4) medicine is a key concept for state-of-the-art oncol-
ogy [23]. In breast cancer care, P4 medicine aims to tailor 
therapy to the individual patient and the specific tumour 
biology. In order to translate P4 medicine into clini-
cal practice, new diagnostic methods and refinement of 
existing tools are required [23, 24].

P2-bMRI can be used to provide imaging biomarker 
supporting personalisation of breast cancer diagnosis 
and treatment, i.e., screening strategies based on patient-
based data and therapies based on specific tumour- and 
patient-based data. Therefore, P2-bMRI may become an 
important driver for the translation of P4 medicine into 
clinical practice. In the following, we summarise the con-
cept of precision medicine and discuss how P2-bMRI will 
help to bridge critical research gaps in this field [24].

Precision medicine
Precision medicine aims to adopt therapy based on spe-
cific characteristics of the individual patient, including 
disease susceptibility, biology, and prognosis as well as 
response to treatment [13, 24–26]. Molecular subtyping 
is a classic example how specific biological characteristics 
of breast cancer aid personalisation of patient treatment 
in current clinical practice [13]. Hereby, molecular sub-
typing provides decision support on whether and what 
systemic therapy should be appropriate, such as endo-
crine therapy in luminal cancers, targeted therapy in 
human epidermal growth factor receptor 2 (HER2)-
positive cancers, or immune therapy in triple nega-
tive cancers [13, 27]. Precision medicine may be further 
improved by genetic microarrays. It has been demon-
strated that genetic microarrays can distinguish patients 
who ultimately benefit from cytotoxic treatment from 
those women where chemotherapy may safely be omitted 
[20, 28]. Regardless of these advances, personalisation of 
therapy is still at a relatively early stage of development, 
judged to be a critical research topic [24]. Although steps 
forward in this direction were done in the last decades, 
the contribution of noninvasive techniques such as MRI 
is a highly interesting option to be considered [29–31].
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Prognostic and predictive biomarkers and their relevance 
for precision medicine
Biomarkers are critical elements for the development of 
precision medicine [24, 32]. Eccles et  al. [24] called for 
the development of “imaging biomarkers” in a system-
atic gap analysis on most urgent breast cancer research 
topics. Authors expect that “validation of multimodality 
imaging biomarkers” will provide a better understanding 
of biological breast cancer behaviours, hereby supporting 
the personalisation of treatment [24].

Per definition, any specific “characteristic that is meas-
ured as an indicator of normal biological processes, 
pathogenic processes, or responses to an exposure or 
intervention, including therapeutic interventions” may 
be regarded as a potential biomarker [32, 33]. Two types 
of biomarkers are of special interest for the concept of 
precision medicine: prognostic and predictive biomark-
ers. The former provides information about overall dis-
ease outcome. They may be used to identify patients who 
actually may benefit from certain types of treatments. 
Whereas prognostic biomarkers do not provide informa-
tion about which individuals are likely to benefit from a 
specific therapy, this may be achieved by predictive bio-
markers. Accordingly, predictive biomarkers may sup-
port clinicians in selecting the most appropriate type of 
treatment for the individual patient [34–36]. While this 
differentiation (prognostic versus predictive biomarkers) 
is relevant, we should consider that there is an obvious 
interplay between prognostication and prediction. With 
reference to the P4 medicine [21], we should consider 
that the second P (“predictive”) includes both prognosti-
cation outcome prediction.

Biomarkers from breast MRI
Application of P2-bMRI as a source of prognostic and 
predictive biomarkers can aid personalisation of treat-
ment. This ultimately may bridge critical research gaps 
in the successful treatment of breast cancer [24]. In 
comparison with traditional biomarkers, such as histo-
pathological (type/grading) and molecular and genetic 
examinations (receptor status, multigene arrays), MRI 
biomarkers offer specific advantages due to the intrinsic 
characteristics of the method, as specified below.

1. P2-bMRI investigates the whole tumour in vivo. 
P2-bMRI hereby potentially reducing the risk of sam-
pling errors [37, 38]. Moreover, also, the surrounding 
tissue (e.g., background parenchymal enhancement 
[BPE] and peritumoural environment, especially 
oedema, as described below) and the whole breast(s) 
can be potentially considered. In contrast, conven-
tional biomarkers may rely on samples taken from 
specific selected tumour regions.

2. P2-bMRI does not require invasive tissue sampling 
and allows to visualise the tumour in vivo. It is com-
monly well-tolerated by patients and has no absolute 
contraindications except those related to the pres-
ence of unsafe ferromagnetic implanted and/or elec-
tronic medical devices.

3. P2-bMRI may transform breast MRI in a one-stop 
shop solution providing both diagnostic and predic-
tive/prognostic information. While the indication for 
preoperative MRI is still the subject of debate, it is 
already regularly performed in clinical practice [9, 10, 
12]. In these patients, the data required for P2-bMRI 
are readily available, and costly additional investiga-
tions are not required. Accordingly, P2-bMRI prom-
ises significant cost savings for treatment person-
alisation. In contrast, alternative tumour profiling 
methods are known cost drivers, so limiting their 
broader application as recently argued to Bhargava 
et al. [22].

4. P2-bMRI provides intrinsic advantages to the clinical 
workflow as all data could be available in real time.

5. Predictive/prognostic data from P2-bMRI can be 
complementary to conventional biomarkers. So, 
P2-bMRI may fine tune the prognostic assessment of 
patients, which have been initially assessed by con-
ventional biomarkers [39].

Triaging patients by P2‑bMRI
Application as a gatekeeper is a promising use case 
of P2-bMRI. Here, the method will serve as a triage 
tool to select patients for more advanced procedures 
of precision medicine such as genetic testing [22, 38]. 
Triaging breast cancer patients for genetic testing 
have been advocated by Bhargava et  al. [22]. Authors 
argue that genetic tests are costly, not generally avail-
able, and changes in treatment affect only a subgroup 
of patients [22]. They have developed triage tools to 
safely forego molecular testing based on standard his-
tological examinations [22]. Validation studies dem-
onstrated that triaging can obviate molecular testing 
in the majority of patients without compromising 
oncologic safety. At the same time, cost savings of US 
$3,000 are achieved for every skipped molecular test 
[22]. Accordingly, Bhargava et al. [22] expect an enor-
mous healthcare value of triage tools in the era of pre-
cision and P4-medicine.

The correlation of MRI data with molecular profil-
ing and genetic tests has been independently verified by 
many authors [40–42]. Hence, P2-bMRI may be adopted 
as a triage tool similar to the concept of Bhargava et al. 
[22]. As previously described, P2-bMRI provides results 
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in real time without the need of additional invasive and 
analytic procedures. Therefore, we expect a potential of 
P2-bMRI as a triage tool in precision medicine, such as 
a valuable help for selecting patients for genetic testing.

Technical requirements for P2‑bMRI
Technical requirements for an up-to-date P2-bMRI are 
the same as for any diagnostic breast MRI [2, 4]. An over-
view is given in Fig. 1. In short, a state-of-the-art full pro-
tocol breast MRI protocol should include a T2-weighted 
sequence, a diffusion-weighted sequence, and a dynamic 
T1-weighted sequence (i.e., before/after intravenous 
application of a gadolinium-based contrast agent) [52, 
53]. Particular attention should be given to the quality of 
diffusion-weighted images, possibly taking into consid-
eration the recommendations provided by the European 
Society of Breast Imaging [5]. Specialised sequences such 
as spectroscopy and fast sequences for pharmacokinetic 
analysis are promising to improve future performance of 
P2-bMRI [65–68] but are not performed outside specific 
research projects.

Data analysis of P2‑bMRI
Just like in diagnostic MRI itself, the spectrum of tools 
available for P2-bMRI is broad as well; it ranges from 
semantic criteria to advanced post-processing tech-
niques, such as artificial intelligence, including radiomics 

data analysis [14–19]. Generally artificial intelligence may 
address a wide range of clinical use cases including pre-
dictive/prognostic tasks [14, 15]. The status of radiom-
ics and artificial intelligence in breast imaging extends 
beyond the aim of this article and has been reviewed 
previously [14, 15, 19, 69]. There is no doubt that these 
methods offer a great advantage for P2-bMRI [14, 15, 
17–19]. At the current stage, however, these methods are 
reserved for academic institutions and are not yet suit-
able for widespread clinical use. Published data are still 
insufficiently validated independently and externally, 
which is why the generalisability has not yet been proven 
[16].

P2‑bMRI: semantic criteria
In contrast, semantic criteria are an integral part of rou-
tine breast MRI diagnostics [43]. This enables us to apply 
P2-bMRI in a large number of patients already today. 
In the following, we give an overview of how to apply 
semantic P2-bMRI criteria to clinical breast MRI proto-
cols. Figures 1, 2, 3, 4, 5, 6, and 7 and Table 1 summarise 
key concepts of this approach.

Background parenchymal enhancement
The vascularisation of normal breast parenchyma is 
assessed by BPE [43]. In high-risk women, BPE has been 
identified as a prognostic imaging biomarker of breast 

Fig. 1 A 15‑min clinical protocol for breast magnetic resonance imaging (MRI). All predictive/prognostic breast MRI information demonstrated 
in the next figures can be derived from a one‑stop shop clinical protocol as shown in this figure. The protocol starts with an unenhanced 
T2‑weighted turbo spin‑echo sequence (T2w TSE). Diffusion‑weighted imaging (DWI) and short‑tau inversion recovery (STIR) are optional but highly 
recommend. On T2‑weighted images, a mass lesion is diagnosed, with perifocal oedema. Next, contrast‑enhanced dynamic scanning is performed 
using a T1‑weighed gradient‑echo (GRE) sequence before/after the intravenous administration of 0.1 mmol/kg of a Gd‑based contrast agent. There 
is evidence of washout, perifocal oedema, and central necrosis (rim sign). The last two descriptors are imaging biomarkers associated with increased 
probability of high‑grade and nodal‑positive invasive cancers. Washout is a strong predictor of poor outcome and is associated with a higher 
likelihood of metachronous metastasis (see also Figs. 5 and 6). Example taken from ref [2], with permission (Dietzel et al. Insights Imaging 2018)
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cancer risk; women showing at least “mild” BPE are asso-
ciated with significantly greater odds of future breast can-
cer (odds ratio: 2.1), which may be explained by deficient 
tissue repair mechanisms in this subgroup of women [46, 
47] (Table 1). However, among average-risk women, the 
level of BPE is not associated with a higher risk of breast 
cancer [46].

The association of current BPE with breast cancer 
prognostic factors, such as higher mammographic den-
sity, steroid receptor status, and lymphovascular invasion 
has been reported in the literature [70]. Lim et  al. [68] 
(hazard ratio 3.1) and Choi et  al. [69] (postmenopausal; 
hazard ratio 3.9) independently reported the associa-
tion of BPE with recurrence-free survival in average-risk 
patients with [70, 71]. These data emphasise the future 
potential of BPE as a genuine MRI imaging biomarker in 
the personalisation of breast cancer care.

Tumour enhancement: morphology and dynamics
A broad spectrum of semantic criteria is available to 
characterise breast tumour vascularisation. They may 
be applied to P2-bMRI as well [43, 50, 63, 72]. Neovas-
cularisation is considered a key step in the process of 
carcinogenesis [73]. Patterns of neovascularisation can 

be assessed by microvessel density at traditional pathol-
ogy examination, and this parameter is regarded a prog-
nostic biomarker of breast cancer by itself [74]. Contrast 
enhancement is the basis for MRI diagnosis of breast 
cancer and is thought to reflect tissue vascularisation 
(Fig. 3) [2, 43]. Accordingly, many authors hypothesised 
that MRI enhancement patterns correlate with patient 
outcome and eventually may be used as imaging bio-
markers [38, 40, 75].

Wash out is a key diagnostic criterion of the delayed 
enhancement phase but should also be approached as 
a prognostic biomarker [2, 43, 63]. It has been identi-
fied as a powerful tool to rule out the risk of metachro-
nous metastasis (sensitivity and negative predictive value 
100%; criterion, washout rate > 40%) [63]. Although these 
findings have to be validated in clinical trials, results 
highlight the potential of P2-bMRI parameters to esti-
mate individual patient risk profile (Fig. 3, Table 1).

Breast cancer is a heterogeneous disease [37]. Volumet-
ric analysis of MRI enhancement parameters investigate 
the composition of the entire tumour vasculature and 
are considered an imaging correlate of breast cancer het-
erogeneity [38, 76] (Fig.  3). Accordingly, the association 
of volumetric MRI parameters with histopathology and 

Fig. 2 Standardised reading setup for comprehensive diagnostic and predictive/prognostic breast magnetic resonance imaging (MRI) at one‑stop 
shop. A female patient with suspicious amorphous segmental calcifications on the right breast at mammography, breast imaging reporting and 
data system (BI‑RADS) 4 diagnostic category (not shown). MRI was performed also for preoperative staging due to suspicion of extended ductal 
carcinoma in situ. Diagnostic MRI shows an extensive heterogeneous segmental non‑mass enhancement predominantly with plateau dynamic 
pattern. A noncircumscribed mass with washout and heterogeneous internal enhancement (BI‑RADS 5 diagnostic category) is located centrally 
within the non‑mass lesions. Relevant prognostic findings are here washout, skin thickening, invasion of the nipple, and diffuse ipsilateral oedema 
(see also Figs. 5 and 6). Semantic criteria correspond to the MRI phenotype of an aggressive invasive breast cancer. P2‑MRI results were confirmed 
by postoperative pathological examination (invasive cancer NOS, G3, Ki‑67+++, triple negative, node positive). Apparent diffusion coefficient map 
(A); unenhanced T1‑weighted gradient echo with colour overlap of the dynamic curve on a pixel‑by‑pixel basis (green/yellow/red = persistent/
plateau/washout) (B); first (C) and last (D) contrast‑enhanced T1 GRE; diffusion‑weighted imaging obtained with b = 800 s/mm2 (E); T2‑weighted 
turbo spin‑echo (F); first (G) and last (H) contrast‑enhanced subtractions. Diffusion‑weighted imaging findings are highlighted in Fig. 7
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prognostic factors of breast cancer such as lymph node, 
hormonal receptor, and HER2 status has been demon-
strated [40]. Building upon these results, correlation of 
volumetric MRI enhancement patterns with surrogate-
free measure of patient outcome has been demonstrated 
in the meantime [38, 76]. For example, P2-bMRI has been 
shown to predict overall survival of breast cancer patients 
[76]. In a subsequent study, authors demonstrated that 
volumetric analysis of MRI enhancement yielded syner-
gistic effects to conventional biomarkers [38]. Findings 
support the hypothesis that P2-bMRI can be used as add-
on tool to further refine risk stratification of established 
prognostic biomarkers.

Rim enhancement is a classic diagnostic pattern of 
breast MRI [2, 43] (Fig.  6). Its prognostic value was 
early reported in the literature. Jinguiji et  al. [61] inves-
tigated the relationship of this semantic MRI criterion 
with prognostic factors. Authors reported the significant 
association of rim enhancement with multiple prognos-
tic factors such as lymph node metastasis, blood vessel 
invasion, steroid receptors, tumour size, and histologi-
cal grade (G3 versus G1 or G2: diagnostic odds ratio 
6.1; specificity 57.5%) (Table  1) [61]. Rim enhancement 

is thought to reflect central hypovascularity due to the 
presence of connective tissue, fibrosis, and/or necrosis in 
rapidly growing aggressive cancers [60, 61]. On the other 
hand, the necrosis sign is considered to indicate colliqua-
tive (fluid) necrosis, a pattern characterised by high sig-
nal intensity inside the cancer on T2-weighted scans [60]. 
As outlined in Table 1, necrosis sign has been described 
as one of the most specific semantic MRI criteria of high 
grade cancers (G3 versus G1 or G2 cancers: diagnostic 
odds ratio 3.7; specificity 94.3% (Table 1) [60].

Biomarkers from unenhanced breast MRI
T2-weighted signal intensity of a breast cancer is 
classified as hyper-, iso-, or hypointense compared 
to the surrounding breast tissue (Fig.  5, Table  1). In 
P2-bMRI, this semantic criterion serves as a predic-
tor of tumour proliferation. Biologically less active 
desmoplastic tumours typically exhibit hypointense 
signal intensity on T2-weighted scans. In contrast, 
the presence of a T2-weighted hyperintense cancer 
suggests increased cellular proliferation and elevated 
Ki-67 expression (diagnostic odds ratio 2.2, specificity 
59.8%) [62, 77].

Fig. 3 Benefit of vascular analysis for predictive/prognostic breast magnetic resonance imaging. In A, B, and C, the enhancement patterns of 
three different breast cancers are colour coded on a pixel‑by‑pixel basis (green/yellow/red = persistent/plateau/washout). The maps reveal 
tumour heterogeneity, progressively increasing from A to C (no washout pixels in A, few of them in B, and many in C). Findings correspond to an 
increasing risk profile which was verified upon pathological and molecular analysis. Here, increasing vascularisation (CD 31 staining top row), cellular 
proliferation (Ki‑67), and aggressiveness (grading) was demonstrated, and a less favourable receptor profile was evident from A to C. ER Oestrogen, 
her2neu Human epidermal growth factor receptor 2, PR Progesterone
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While rim enhancement and signal intensity on 
T2-weighted scans investigate the gross anatomy of 
breast cancer, tumour microstructure can be investi-
gated by diffusion-weighted imaging (DWI). DWI pat-
terns are quantified by the apparent diffusion coefficient 
(ADC), which is typically used as a quantitative bio-
marker to aid differential diagnosis of suspicious breast 
lesions [5, 78, 79]. DWI could be used for P2-bMRI as 
well, and we regard the assessment of tumour invasive-
ness by ADC mapping as a promising clinical applica-
tion [80]. Bickel et  al. [80] reported higher ADC levels 
for ductal carcinoma in situ (DCIS) compared to invasive 

cancers. Personalisation of DCIS treatment is based on 
core biopsy samples, which are known to miss invasive 
tumour components in a relevant number of patients. 
Importantly, pure DCIS tumours require a different 
treatment strategy, which is why delaying correct diag-
nosis of invasive cancers should be avoided. To solve this 
dilemma, ADC may be used as a decision support tool 
[80]. Different to core biopsy, DWI examines the whole 
tumour, reducing the risk of sampling errors, which 
leads us to the following use case: if presurgical histol-
ogy reveals DCIS, but ADC values (as well as patterns of 
contrast enhancement) are suggestive of invasive cancer, 

Fig. 4 Potential role of T2‑weighed images: the lesion signal as a possible surrogate of water content. Signal intensity on T2‑weighted images may 
reflect water content and warrants further scientific research. Compared to the surrounding parenchyma, a lesion is classified as hyperintense (A), 
isointense (B), or hypointense (C). In D, a mass lesion is identified on T2‑weighted images (red arrow). T2‑weighted signal intensity is assessed in 
comparison with the surrounding parenchyma. In D, just like the adjacent Cooper ligaments, the parenchyma displays less signal than the tumour. 
Correspondingly, the tumour is classified as “hyperintense”. Findings suggest the presence of an aggressive breast carcinoma phenotype. Predictive/
prognostic findings were verified by immune histology revealing high‑grade cancer with negative steroid receptors and elevated Ki‑67 suggesting 
high cellular proliferation. Note perifocal and subcutaneous oedema (dotted arrows). In contrast, E displays a hypointense less aggressive carcinoma 
(red arrow, G2, positive steroid receptors, only Ki‑67+)
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Fig. 5 The pivotal role of T2‑weighed images: oedema. Any asymmetric ipsilateral T2‑weighted signal increase not due to the tumour itself, cysts 
or artefacts is referred to as “oedema” in A, B, and C. Different oedema patterns are distinguished such as perifocal (A), full red arrow), subcutaneous 
(B, full red arrow), prepectoral (C, full red arrow), and diffuse (B, dotted red arrow). Oedema is considered among the best evaluated predictive/
prognostic criteria and was associated with high grade and nodal‑positive cancers as well as disease recurrence (see also Table 1)

Fig. 6 Selected semantic parameters with known biological correlates. They can be readily implemented into clinical practice. Rim enhancement 
(A) was among the first morphologic parameters reported in the literature and reflects an aggressive cancers phenotype. This is also suggested 
by the adjacent vessel sign (A, magnification: dotted red arrow) [50]. Rim enhancement is thought to reflect central hypovascularity due to 
connective tissue, fibrosis, and/or necrosis. Necrosis sign (B) specifically depicts central colliquative (liquid) necrosis (B, magnification: full red 
arrow), characterised by a high signal intensity on T2‑weighted images within the centre of the tumour. Invasion of the cancer into the nipple 
areolar complex is related to poor outcome. The semantic criterion described as “destruction of nipple line” (C) is best depicted on DCE images (C, 
magnification: red arrow). Further details including diagnostic performance of semantic parameters are provided in Table 1
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diagnosis of pure DCIS has to be questioned [80]. In this 
scenario, re-biopsy shall be considered and may avoid 
delayed diagnosis of invasive cancer as proposed by 
Bickel et al. [80] (Fig. 7).

Associated vascular findings
The adjacent vessel sign is a finding related to the mac-
rovasculature of breast lesions. According to Dietzel 
et al. [70], the adjacent vessel sign reflects invasiveness of 
breast cancer. It indicates the presence of invasive can-
cer and is rarely seen in DCIS (diagnostic odds ratio 2.7, 
specificity 72.6%) [50] (Fig. 6, Table 1).

Whole breast vascular maps were investigated by Sar-
danelli et al. [72, 81] showing the association of an increased 
unilateral map with the presence of invasive cancers. This 
association was also shown to allow an increase in specific-
ity using a 3-T magnet [82]. Martincich et al. [63] studied 
the variations of vascular maps in the context of primary 
systemic therapy. They showed that before therapy, vascu-
lar maps were asymmetrically increased ipsilaterally to the 
locally advanced breast cancer. After primary systemic ther-
apy, vascular maps significantly changed only in the breast 
harbouring the cancer, with responders showing signifi-
cantly more reduce vascular maps than nonresponders [63].

Associated nonvascular findings: oedema
The local tumour environment is recognised as a key 
factor in breast cancer development. It may be studied 
with semantic MRI criteria [83]. Oedema is defined as an 
associated finding in the BI-RADS lexicon, and it is char-
acterised by T2-weighted signal increase within the local 
tumour environment [43, 54] (Fig. 5). It can be classified 
as perifocal, diffuse, subcutaneous, and prepectoral [39, 
54–56, 84]. In general, the presence of oedema is indica-
tive of aggressive cancer phenotypes, which is espe-
cially true for diffuse and prepectoral patterns [54, 55, 
84]. According to Kaiser et al. [85], the latter is typically 
associated with lymph node metastases, lymphangitic 
carcinomatosis, and invasion of the chest wall. Subcuta-
neous oedema is specific of inflammatory breast cancer 
[84]. Whereas the majority of studies on the prognos-
tic value of oedema used surrogates of patient outcome 
[54–56, 84], Cheon et al. investigated the impact of peri-
focal oedema on patient outcome [37]. Authors identi-
fied perifocal oedema as an independent biomarker of 
disease recurrence (hazard ratio 2.48) potentially improv-
ing the prognostication of disease recurrence by conven-
tional biomarkers [39]. Meanwhile, the prognostic value 
of the semantic criterion “oedema” has been verified by 

Fig. 7 Apparent diffusion coefficient (ADC) mapping (detailed analysis of the DWI already shown in Fig. 1). ADC values are extracted using 
quantitative region‑of‑interest‑based measurements by standardised methods. ADC is given with (A) and without (B) colour overlap. ADC was 
applied to distinguish ductal carcinoma in situ (DCIS, orange) from invasive carcinoma (red). Note the presence of a benign lesion (a fibroadenoma), 
also correctly characterised by the ADC map (green), adjacent to the DCIS
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numerous authors [86–88]. In particular, advanced tech-
niques such as high-resolution diffusion-weighted imag-
ing and radiomics showed promising potential to analyse 
peritumoural tissue, and they may further support the 
clinical impact ofP2-bMRI [89–91].

Tumour extent
Accurate assessment of anatomical tumour extent is 
the main rationale for preoperative breast MRI locore-
gional staging [10, 92]. However, this assessment 
provides significant prognostic information as well; 
tumour size is a key prognostic factor of breast cancer, 
and larger tumours are associated with a higher likeli-
hood of worse outcome [92, 93]. Infiltration of breast 
cancer into associated structures such as the nipple 
areola complex or into the skin is associated with a 
poorer patient outcome [92, 94]. Accordingly, Diet-
zel et  al. [52, 53] demonstrated that semantic crite-
ria such as destruction of nipple line (diagnostic odds 
ratio 2.5, specificity 88.5%) or skin thickening (diag-
nostic odds ratio 5.9, specificity 94.5%) are associated 
with a poor prognostic profile such as that defined by 

the presence of locoregional lymph node metastases 
(Fig. 6, Table 1).

Occurrence of locoregional and distant metastasis 
deteriorates prognosis [93, 95]. Whole body MRI is an 
established tool to detect breast cancer metastasis, and 
its performance may be further improved by utilising the 
technology combining positron emission tomography 
and MRI [96–98]. While typical preoperative MRI aims 
to primarily assess ipsilateral tumour extension and the 
possibility of contralateral breast cancers, state-of-the-
art scanner hardware could actually combine dedicated 
breast MRI examination with whole-body examinations 
as suggested by Kirchner et  al. [98]. Since significant 
prognostic information can be derived from whole body 
MRI examinations, they are promising in the context for 
P2-bMRI as well [93, 95]. Different strategies exist for 
whole body examinations in breast cancer care. Kirch-
ner et al. [98] proposed a complete whole body positron 
emission tomography/MRI staging. On the other hand, 
abbreviated protocols enabling screening for breast can-
cer metastasis are available as well [99, 100]. Requiring 
only 90 s of additional examination time, such protocols 

Fig. 8 P2‑bMRI phenotypes are imaging patterns highly specific of a distinct tumour biology. They may be used as rule‑in or rule‑out criteria 
for clinical decision‑making. Typically, P2‑bMRI phenotypes are based on the assessment of multiple criteria in concert as in this example: here, 
a machine learning algorithm was used to identify phenotypes predictive of nodal‑positive or nodal‑negative stage (N+, N‑). Semantic imaging 
criteria of the index lesion were used to predict nodal stage (for details, please see reference [42]). Classification results are presented as an intuitive 
and easy to follow decision tree. Accordingly, the “nodal‑negative P2‑bMRI phenotype” is characterised by a smooth lesion without oedema and 
without skin thickening. The positive likelihood of N+ is 0% for this P2‑bMRI phenotype. Similar results can be achieved with other predictive/
prognostic MRI methods, including artificial intelligence, each of them providing intrinsic advantages and disadvantages
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can be combined with a standard breast MRI within one 
single examination. Initial clinical data demonstrated 
promising results regarding both lymph node staging 
(positive predictive value of 100%, negative predictive 
value of 94.3%) and distant metastases screening (sensi-
tivity 100%, specificity 98.3%) [99, 100].

Breast MRI phenotyping
Highly accurate breast MRI diagnosis is not achieved, 
until multiple parameters are assessed in concert [1, 
2]. The same applies to P2-bMRI. Although individ-
ual parameters already enable prognostic assessment 
(Table 1), the relevance of P2-bMRI can be further speci-
fied when the lesion is analysed in the concert of multi-
ple parameters [52, 99]. If these patterns correspond to 
a specific tumour biology, we refer to this feature com-
bination as P2-bMRI phenotype. Accordingly, P2-bMRI 
phenotypes can provide actionable information, which is 
why we expect their key role in translating P2-bMRI into 
clinical practice.

An example of the use of P2-bMRI for phenotyping 
using artificial intelligence approach has been proposed 
by Dietzel et al. [101] (Fig. 8). Authors aimed to predict 
axillary lymph node metastases based on semantic MRI 
parameters of the index cancer. To support clinical appli-
cation, prediction was based on a minimal number of 
MRI descriptors, and machine learning methods were 
used for this purpose [2, 99]. As expected, a single MRI 
parameter (skin thickening) was already able to pre-
dict the risk of axillary lymph node metastases (Fig.  8, 
Table  1). However, a reliable rule-out criterion (i.e., “no 
lymph node metastases”) could only be reached when 
three parameters were combined (Fig.  8, risk of nodal 
metastasis 0/56 = 0%).

The future
To translate P2-bMRI into P4 breast cancer care, three 
major challenges should be overcome.

First of all, methodological development of P2-bMRI 
needs to be refined. It may be achieved at the level of 
MRI data analysis. Radiomics of individual lesions (and 
machine learning applied to lesion radiomic data) as well 
as the use of convolutional neural networks applied to 
the whole image(s) may be regarded as most promising 
tools here [15, 19, 69, 102]. Yet, there is still considerable 
potential for improvement even only based on semantic 
criteria. Future development of P2-bMRI may also be 
achieved at the level of data acquisition, and magnetic 
resonance spectroscopy may be particularly promising 
here [65, 68].

However, methodological development by itself is not 
sufficient to translate P2-bMRI into clinical practice. 

Empiric evidence on P2-bMRI is generally derived from 
small, monocentric, and retrospective studies. Clinical 
application will request validation of P2-bMRI in a real-
world oncological setting before adopting the methods. 
This calls for dedicated interdisciplinary, large, multicen-
tre studies, perhaps also randomised controlled trials.

Finally, the breast imaging community itself should 
try to be a strong promoter in the process of translating 
P2-bMRI into clinical practice. The prognostic potential 
of imaging biomarkers is not yet sufficiently recognised 
outside the field of radiology. Only when radiologists and 
nuclear medicine physicians dedicated to breast imaging 
will be successful in convincing key stakeholder such as 
patients, clinical colleagues, healthcare providers, and 
MRI vendors, P2-bMRI will start to be an integral part of 
routine breast cancer care.
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