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NARRATIVE REVIEW

Tasks for artificial intelligence in prostate MRI
Mason J. Belue and Baris Turkbey* 

Abstract 

The advent of precision medicine, increasing clinical needs, and imaging availability among many other factors in 
the prostate cancer diagnostic pathway has engendered the utilization of artificial intelligence (AI). AI carries a vast 
number of potential applications in every step of the prostate cancer diagnostic pathway from classifying/improving 
prostate multiparametric magnetic resonance image quality, prostate segmentation, anatomically segmenting cancer 
suspicious foci, detecting and differentiating clinically insignificant cancers from clinically significant cancers on a 
voxel-level, and classifying entire lesions into Prostate Imaging Reporting and Data System categories/Gleason scores. 
Multiple studies in all these areas have shown many promising results approximating accuracies of radiologists. 
Despite this flourishing research, more prospective multicenter studies are needed to uncover the full impact and util-
ity of AI on improving radiologist performance and clinical management of prostate cancer. In this narrative review, 
we aim to introduce emerging medical imaging AI paper quality metrics such as the Checklist for Artificial Intelligence 
in Medical Imaging (CLAIM) and Field-Weighted Citation Impact (FWCI), dive into some of the top AI models for seg-
mentation, detection, and classification.
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Key points

•	 Artificial intelligence (AI) offers potential applica-
tions for various steps of prostate magnetic reso-
nance imaging workflow.

•	 Prostate segmentation, intraprostatic lesion detec-
tion, and classification AI tools are commonly 
reported in the literature with promising results.

•	 Prospective multicenter studies are needed to deter-
mine impact of AI on improving radiologist perfor-
mance.

Background
Artificial Intelligence (AI) is an umbrella term that 
encompasses both machine learning (ML) and deep 
learning (DL). Traditional ML methods usually require 
several preprocessing steps which include anatomical 
segmentation and feature extraction whereas DL is a sub-
field of ML that does not necessarily depend on hand-
crafted features and independently identifies features 
to generate desired output predictions [1, 2]. DL, more 
commonly than ML, makes use of artificial neural net-
works that use statistical models inspired and partially 
modeled on biological neural networks. The use of artifi-
cial neural networks allows for the approximation of non-
linear relationships between the inputs and outputs [3]. 
A major challenge for prostate cancer (PCa) management 
is the lack of non-invasive tools that can differentiate 
clinically significant PCa (csPCa) and clinically insignifi-
cant PCa (cisPCa), resulting in overdiagnosis and over-
treatment. There are many different definitions of csPCa 
ranging from Gleason score ≥ 6 or ≥ 7 permutated with 
various clinical factors including prostate-specific anti-
gen (PSA) cutoffs, presence of extra-prostatic extension, 
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and biopsy-core cancer percentage [4]. The most com-
mon definition of csPCa across most studies is Gleason 
score ≥ 7.

Many challenges and potential improvements remain 
in the prostate cancer diagnostic pathway that may be 
addressed by AI with the common goal of potentially 
reducing cisPCa overdiagnosis and csPCa underdiagno-
sis. AI may help accomplish improved cancer detection 
and/or classification across benign and malignant enti-
ties and it may aid in segmentation of suspicious foci and 
normal anatomy on magnetic resonance imaging (MRI) 
scans for tasks such as volume estimation or treatment 
planning utilizing transrectal ultrasound-guided biopsy 
[5]. AI can also help with the initial evaluation or triag-
ing of prostate multiparametric MRI (mpMRI) cases 
(i.e., picking/identifying prostate MRI examinations with 
more atypical image characteristics) and of image quality 
(i.e., classifying mpMRI scans as diagnostic versus non-
diagnostic) [6–8]. All these steps in the PCa diagnostic 
pathway may suffer from low inter-reader agreement of 
various sources which AI may also be able to improve 
upon. Once clinical efficacy of AI systems is demon-
strated, clinical deployment can be envisioned as a com-
panion system that creates attention boxes/maps for the 
radiologist during their clinical read, serves as a second 
reader providing independent diagnoses, or can be uti-
lized as patient triage systems [9].

In this narrative review, we introduce emerging medical 
imaging AI paper quality metrics such as the Checklist 
for Artificial Intelligence in Medical Imaging (CLAIM) 
and Field-Weighted Citation Impact (FWCI), dive into 
some of the top AI models for segmentation, detection, 
and classification (Fig.  1), and also mention potential 
areas of impact in the radiologist workflow (Fig. 2).

CLAIM and FWCI
CLAIM was developed in 2020 [10] to aid authors in pre-
senting research and reviewers in reviewing already pub-
lished AI manuscripts in medical imaging. The CLAIM 
checklist, modified after the Standards for Reporting of 
Diagnostic Accuracy Studies, STARD, guidelines, was 
specifically designed to address applications of AI in 
medical imaging that include classification, detection, 
reconstruction, and workflow optimization. The check-
list consists of 42 criteria that should be considered or 
viewed as “best practice” for presenting medical imag-
ing AI research [10]. This CLAIM checklist can easily be 
turned into a percentage of CLAIM fulfillment, an objec-
tive assessment based on if a paper reports in a way that 
is considered “best practice” via fulfilling the applicable 
CLAIM requirements versus if they do not.

FWCI, a common Scopus article metric, is the ratio 
of the total citations received by the total citations that 

would be expected based on the average of the subject 
field. A FWCI of 1 means that the paper performs just 
as expected for the global average whereas more than 1 
means that the paper is more cited than expected accord-
ing to the global average (a FWCI of 1.48 means 48% 
more cited than expected) and less than 1 means that the 
paper is cited less than expected according to the global 
average. Both CLAIM and FWCI can both be used as 
markers as of article/research impact and rigor and are 
encouraged to be used in AI manuscript reporting and 
evaluation.

Overall, there were 29 classification/detection papers: 
18 detection papers, 4 detection and classification papers, 
and 2 which did not indicate. When comparing papers 
that created classification models (n = 29) versus those 
that created detection models (n = 18), the mean AUC 
was 0.843 for classification models (n = 25 of 29 report-
ing) and 0.832 for detection models (n = 15 of 18 report-
ing), while the mean field-weighted impact factor was 
4.79 for classification models (n = 26 of 29 reporting) and 
3.64 for detection models (n = 18 of 18 reporting), and 
the mean CLAIM percentage fulfillment was 77.8% (n = 
29 of 29 reporting) for classification papers and 71.2% for 
detection papers (n = 18 of 18 reporting).

The classification and detection papers that were in 
the top 25% with respect to field-weighted impact factor 
of the sampled papers and those which have the largest 
sample sizes and highest CLAIM percentage fulfillment 
are discussed below as we believe these papers will rep-
resent the most impactful and potentially generalizable. 
Additionally, emerging segmentation AI papers are also 
introduced which were not covered in this prior review 
(Table 1).

AI‑based prostate segmentation
Prostate segmentation AI is developed to extract out ana-
tomical/lesion regions-of-interest similarly to manual 
segmentation but attempts to address the variability of 
segmentations that result from readers of different expe-
riences and MRI scans of varying quality [18]. A typical 
anatomical AI segmentation training/inference work-
flow is shown in Fig. 3 from a prostatic urethra segmen-
tation AI model [19]. Segmentation AI will attempt to 
output the exact outline of the desired object/volume of 
interest (Fig.  1b). Segmentation of the prostate and its 
related structures is very important for identifying its 
capsule, prostatic zones, urethra tract, and intraprostatic 
lesion locations. Identification of these areas allows for 
improved the treatment of benign prostate hyperplasia, 
surgical and targeted-biopsy planning, radiotherapy dos-
age/toxicity calculations, and predicting cancer-specific 
survival and prognosis [5, 20].
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Segmentation of prostate MRI has critical clinical uses 
such as accurate estimation of the entire prostate gland 
volume for calculating the serum prostate-specific anti-
gen (PSA) density and MRI data preparation for biopsy 
guidance in transrectal ultrasound/MRI fusion guided 
biopsy systems and for radiotherapy planning. Manual 
segmentation of the prostate and its sub-organs such as 
the urethra is a time-consuming task and is very much 
prone to interoperator variations [21]. AI has been com-
monly used for prostate segmentation and currently 
there are few commercial solutions for this time-con-
suming process [7].

Recently, DL-based AI solutions are reported com-
monly to provide robust performance for segmenting 
the prostate gland and its zones. In a study by Wang 
et  al. [11], a three-dimensional (3D) fully convolutional 
network with deep supervision was used to develop a 
fully automated prostate segmentation model for T2- 
weighted MRI. The authors reported a mean Dice simi-
larity coefficient of 0.88 (range 0.83−0.93) between AI 
model and manual segmentations for the whole pros-
tate. Wang et  al. [11] utilized a combined loss function 
of both cross-entropy loss and cosine loss in order to take 
advantage of their individual strengths and attempt to 

Fig. 1  Example of potential artificial intelligence outputs from combining the three sequences of multi-parametric magnetic resonance imaging, 
with (A) representing the detection arm identifying the bounding box, (B) representing the lesion segmentation arm, and (C) representing the 
classification arm with the ability to classify lesions from pre-annotated bounding boxes, lesion segmentations, or full non-annotated images. EPE 
Extra-prostatic extension, GS Gleason score, ISUP International Society of Urological Pathology, PI-RADS Prostate Imaging Reporting and Data System
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achieve better quantitative and qualitative performance. 
The cross-entropy loss is generally optimized for voxel-
level accuracy, while other loss functions such as cosine 
similarity loss are helpful for improving the segmenta-
tion quality. In another study, Ushinsky et al. [12] devel-
oped a hybrid 3D-two dimensional (2D) U-net based 
segmentation algorithm for automatic localization and 
segmentation of prostate gland at T2-weighted MRI of 
299 patients. The AI-based whole prostate segmenta-
tion model achieved a mean Dice similarity coefficient of 
0.898 (range, 0.890–0.908) when compared with manual 
segmentations. The model Ushinksy et al. developed lev-
erages features from multiple axial slices simultaneously 
to better construct a single 2D image. They say this archi-
tecture imitates a radiologist who will typically interpret 
multiple axial images before making decisions on one 
2D image. Finally, in a study by Sanford et al. [13], a DL 
approach combining 2D and 3D architectures with trans-
fer learning incorporation was used to develop a whole 
prostate and transition zone segmentation algorithm 
in 648 patients. The study reported mean Dice similar-
ity coefficients of 0.931 and 0.89 for whole prostate and 

transition zone, respectively. This study utilized a data 
augmentation strategy which was specific to the gland 
deformations, intensity variations and alterations in 
image acquisition for MRI data from five different centers 
and this novel strategy improved the whole prostate and 
transition zone segmentation performances 2.2% and 3%, 
respectively. Prostate segmentation AI is the most stud-
ied part of prostate MRI workflow and current research 
indicates that 3D DL-based applications can offer state of 
art solutions for this time-consuming task during pros-
tate MRI read out and biopsy planning for radiologists. 
Figure 3 illustrates how segmentation AI might improve 
and supplement the workflow of a radiologist. Many of 
these strategies discussed above for anatomical segmen-
tation of the prostate and its sub-organs also apply to sus-
picious lesion segmentation as well.

Intraprostatic lesion AI detection
AI for prostate cancer detection is mainly used to iden-
tify cancer suspicious areas within a prostate MRI scan 
and do not require prior lesion annotation by radiologists 
[8]. AI-based detection models may range from two-class 

Fig. 2  The potential impact of AI-driven prostate segmentation on the workflow of the radiologist. A 6-year-old male patient with a serum PSA of 
13.5 ng/mL: multiparametric MRI (T2-weighted sequence, ADC map; and diffusion-weighted image obtained with b = 1,500 s/mm2) (A); manual 
segmentation or AI for total prostate organ and lesion detection/segmentation may be run (B); segmentation outputs aid in calculation of variables 
such as PSA density and greatest lesion dimension and classification (AI can potentially assign PI-RADS scores or predict suspicion of extra-prostatic 
extension to generate the report (C); output segmentations can be used for registration to ultrasound for TRUS/MRI fusion guided biopsy (D). AI 
Artificial intelligence, ADC Apparent diffusion coefficient, MRI Magnetic resonace imaging, PI-RADS Prostate Imaging Reporting and Data System, 
PSA Prostate-specific antigen, TRUS Transrectal ultrasound
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lesion detection (csPCa versus cisPCa) systems to multi-
class lesion detection systems such as the International 
Society of Urological Pathology (ISUP) score [22] or the 
Prostate Imaging Reporting and Data System (PI-RADS) 
score [16]. In contrast to segmentation, which generally 
provides the exact outline of an object within an image, 
AI-based detection helps to create bounding boxes 
around suspicious objects (Fig. 1a). To date, several stud-
ies have evaluated AI algorithms developed for prostate 
cancer detection on mpMRI. Despite the many differ-
ences in feature extraction, MRI techniques, and study 
populations, these studies demonstrate a robust detec-
tion rate: 75 to 80% or more. Notably, this is within the 
range of reported radiologist performance [1].

For AI-based detection there have been several valida-
tion studies investigating if these AI truly have an impact 
on the radiologist workflow. In a recent multireader, 
multi-institutional study, Gaur et  al. [23] showed that 
AI-based detection improved specificity when combined 
with PI-RADS v2 [24] categorization. This AI-based 
detection also slightly improved radiologist efficiency and 
found an index lesion sensitivity for PIRADS v2 ≥ 3 of 
78% [23]. Litjens et al. [25] and Song et al. [26] have also 
demonstrated the improved detection of cancer and dis-
crimination of csPCa from cisPCa when combining AI-
based prediction and PI-RADS v2 [25, 26].

The top AI studies developing detection AI are fur-
ther discussed. One DL paper with a CLAIM percentage 
fulfillment of 68.3% and a FWI of 6.04 by Cao et al. [14] 
developed a joint prostate cancer detection and Glea-
son score prediction model on a dataset of 417 patients 
who underwent mpMRI [14]. The model combined 
T2-weighted turbo spin-echo imaging and maps of the 
apparent diffusion coefficient (ADC) using diffusion-
weighted echo-planar imaging and stacked them as dif-
ferent imaging channels before feeding into FocalNet, 
an end-to-end multi-class CNN. One unique addition 
that Cao et al. [14] made is what they call mutual finding 
loss. It tries to address the challenge that different com-
ponents of mpMRI (T2-weighted and diffusion weighted 
sequences, ADC maps, dynamic contrast-enhanced 
sequences) capture distinct information and only a por-
tion of the information is shared across all components 
when stacked in a multichannel AI detection (Fig. 1a). As 
a result of this, findings which are observable in one com-
ponent may be partially observable or non-observable in 
the other components. During the end-to-end AI model 
training, a CNN with stacked components as proposed 
by Cao et al. [14] can learn the common features across 
components, effectively emulating the normal process of 
a radiologist’s reading mpMRI, based on a combination 
of the various imaging findings on the subcomponents 
of mpMRI. For the detection of histopathology-proven 

Table 1  Summary of the artificial intelligence (AI) development papers discussed in detail

2D Two-dimensional, 3D Three-dimensional, ADC Apparent diffusion coefficient, AUC​ Area under the curve, CNN Convolutional neural network

First author 
[reference 
number]

Overall 
sample 
size

AI family AI method Public/external 
datasets used

Images used Loss functions AUC​ Dice 
similarity 
coefficient

Wang [11] 90 Whole gland 
segmentation

3D CNN + skip 
connections

PROMISE12 T2-weighted Cross-entropy + 
cosine loss

0.86−0.88

Ushinsky [12] 299 Whole gland 
segmentation

Hybrid 2D-3D 
CNN + skip con-
nections

T2-weighted Adam loss 0.88

Sanford [13] 648 Whole gland 
segmentation

Hybrid 2D-3D 
CNN

Five separate 
unaffiliated 
institutional 
independent 
datasets

T2-weighted Dice similarity 
coefficient loss

0.931

Cao et al. [14] 417 Lesion detection 3D CNN FocalNet T2-weighted, 
ADC maps, echo-
planar

Mutual finding 
loss

0.81

Ishioka [15] 335 Lesion detection U-net + 
ResNet50 (skip 
connections)

T2-weighted Adam loss 0.64–0.65

Le [16] 364 Lesion classifica-
tion

Two parallel 2D 
CNNs

The Cancer 
Imaging Data-
base (TCIA)

T2, ADC maps Similarity loss 0.91

Liu et al. [17] 341 Lesion classifica-
tion

3D CNN Xmas-
Net

PROSTATE-x T2, ADC, diffu-
sion-weighted, 
Ktrans

Adam loss 0.84
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index lesions and clinically significant lesions, their 
FocalNet achieved 89.7% and 87.9% sensitivity at one 
false positive per patient and showed a sensitivity only 

3.4% and 1.5% lower than that of experienced radiolo-
gists using PI-RADS v2 [14]. Another DL detection paper 
with a CLAIM percentage fulfillment of 75% and FWI 

Fig. 3  Typical training/inference/evaluation workflow of segmentation AI showing a three-dimensional CNN U-Net for automated segmentation of 
the prostatic urethra. First, the raw T2-weighted image undergoes preprocessing for intensity normalization, size scaling/cropping, and for training 
the image undergoes additional data augmentations. Second, the preprocessed image is fed into the CNN which outputs the prediction or white 
segmentation. Third, the ground truth red urethral contour is compared to the AI-predicted white contour, the loss or difference is computed, 
and this loss is communicated back to the CNN for tuning of neuronal weights. At the final stage, the performance evaluation of the AI model is 
conducted using the Dice similarity coefficient. AI Artificial intelligence, CNN Convolutional neural network
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of 7.69 by Ishioka et al. [15] shows the power of AI net-
work ensembling by combining a U-net with ResNet50 
and introduces neural network interpretability and prob-
ability maps. U-net has the potential to distinguish whole 
and local pelvic structures and ResNet can then reformu-
late the CNN layers to learn them as residual functions 
instead of learning unreferenced functions. It is generally 
understood that residual functions help to eliminate the 
vanishing gradient problem in AI by allowing it to com-
municate with intermediate CNN layers. One unique 
contribution from Ishioka et  al. [15] is the visualization 
of the feature and probability maps within the CNN as a 
way of interpreting which imaging features the AI is using 
the most for predictions [15]. These feature maps are 
paramount in attempting to explain the logical structure 
of a neural network, which is often expressed as a “black 
box” and may take form as feature maps, saliency maps, 
or probability maps [see Fig. 4 showing probability maps 
for AI detection]. Overall, intraprostatic lesion detec-
tion is one of the most critical steps of prostate MRI read 
outs and it requires significant expertise and is prone to 
interobserver variation commonly. Currently, quite a few 
research-based AI models exist for this task however, to 
document their actual impact on improving clinical man-
agement, which is mainly including biopsy decisions, 
prospective and multicenter studies are needed.

Intraprostatic lesion AI classification
Intraprostatic lesion classification AI models are used 
to classify either full images or to classify preannotated 

regions-of-interest ranging from two classes (csPCa versus 
cisPCa) to multiple separate classes (histopathological grad-
ing also known as ISUP score or PI-RADS score) as seen 
in Fig. 1. AI lesion classification typically does not perform 
voxel-level predictions but is commonly entire image/region-
of-interest based. Patients with cisPCa are those with ISUP 
2 or lower and are usually eligible for active surveillance 
whereas men with higher grade lesions such ISUP greater 
than 2 are typically advised to undergo active treatment such 
as focal therapy, radical prostatectomy, or radiotherapy [8].

Accurate lesion classification is important for selecting 
appropriate management options as any one therapy has a 
mosaic of side effects. Reductions in unnecessary biopsies 
is important in preventing common biopsy complications 
including infections, hematuria, rectal bleeding, hemato-
spermia, lower urinary tract symptoms, and temporary 
erectile dysfunction [4]. Suarez-Ibarrola et  al. [2] found 
within the literature that lesion classification accuracy of the 
algorithms they looked at was comparable to that provided 
by radiologists using PI-RADS [2]. An original research 
study [16] with a percentage CLAIM fulfillment of 68.3% 
and a FWI of 6.81 developed a classification CNN for (i) 
detecting cancerous versus noncancerous lesions and (ii) 
differentiating csPCa versus indolent cisPCa. This paper 
designed a new similarity loss function like mutual find-
ing loss utilized by Cao et  al. [23], allowing for the fusion 
of common and consistent features from ADC maps and 
T2-weighed images. This allows the CNN to “see” the true 
visual patterns of PCa across the spectrum of imaging 
sequences. Otherwise, without similarity loss functions, 

Fig. 4  Multi-channel prostate lesion computer-assisted detection model outputting probability maps and contours of prostate zones for 
interpretability
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imaging features from different mpMRI sequences such as 
those being T2-weighted will not be able to fill in the infor-
mation gaps that arise from other functional sequences such 
as ADC maps, diffusion-weighted images, or vice versa.

Le et al. [16] then combined the classification results of 
the multimodal CNN with results based on hand-crafted 
features using a support vector machine classifier. Experi-
mental results from an extensive clinical dataset from 364 
patients with a total of 463 PCa lesions and 450 noncan-
cerous lesions demonstrate that their system can achieve 
a sensitivity of 89.9% and a specificity of 95.8% for dis-
tinguishing cancerous from noncancerous tissues. With 
respect to csPCa versus cisPCa, they achieved a sensitiv-
ity of 100.0% and a specificity of 76.9%. This paper also 
demonstrated superior performance compared to the 
state-of-the-art method relying on handcrafted features 
alone [16]. Another original research study [17] with a 
percentage CLAIM fulfillment of 70.6% and an FWI of 
23.12 developed XmasNet, a novel deep learning architec-
ture based on CNNs, for classification of prostate lesions 
on MRI. This study showed that with the strength of data 
augmentation via 3D rotations and slicing, their XmasNet 
outperformed traditional ML models based on engineered 
features. Their XmasNet outperformed 69 methods from 
33 participating groups and had the second highest AUC 
(0.84) in the 2017 PROSTATEx challenge. Like intrapros-
tatic lesion detection AI models, several research-based AI 
algorithms are defined for intraprostatic lesion classifica-
tion task and further research is needed to depict the ben-
efit of these AI models in radiologists’ performance.

Moving forward with prospective AI ptudies
AI can potentially play a major role in further improving 
prostate MRI contribution to the clinical management of 
localized PCa. The majority of the work in prostate MRI AI 
reveals promising results for various tasks of prostate MRI 
interpretation and data processing for biopsy; however 
quite a limited amount of this work has reached to actual 
translation phase to clinics so that a clear benefit of AI on 
prostate MRI workflow is yet to be demonstrated. For this 
to happen, one of the “musts” is proving the benefit(s) of 
AI in prospective clinical trials. The potential benefits can 
be listed as improved performance in comparison with 
radiologists’ and reduction in read out times and inter-
reader variation. Moving forward comfortably with AI will 
require this critical prospective multicenter evaluation.

Conclusions
AI is a commonly studied topic for prostate MRI and 
several groups report AI models for prostate segmenta-
tion, intraprostatic lesion detection and classification 

tasks with promising results. Some of the best models 
across the applications discussed utilize 3D AI models 
and special loss functions that attempt to combine the 
findings and fill in gaps introduced by different mpMRI 
sequences. Prospective studies with multi-center design 
will be needed to depict the impact of AI on radiologist 
performance and clinical management of prostate cancer.
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