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Abstract 

Background:  We investigated whether features derived from texture analysis (TA) can distinguish breast density (BD) 
in spiral photon-counting breast computed tomography (PC-BCT).

Methods:  In this retrospective single-centre study, we analysed 10,000 images from 400 PC-BCT examinations of 
200 patients. Images were categorised into four-level density scale (a–d) using Breast Imaging Reporting and Data 
System (BI-RADS)-like criteria. After manual definition of representative regions of interest, 19 texture features (TFs) 
were calculated to analyse the voxel grey-level distribution in the included image area. ANOVA, cluster analysis, and 
multinomial logistic regression statistics were used. A human readout then was performed on a subset of 60 images 
to evaluate the reliability of the proposed feature set.

Results:  Of the 19 TFs, 4 first-order features and 7 second-order features showed significant correlation with BD and 
were selected for further analysis. Multinomial logistic regression revealed an overall accuracy of 80% for BD assess-
ment. The majority of TFs systematically increased or decreased with BD. Skewness (rho -0.81), as a first-order feature, 
and grey-level nonuniformity (GLN, -0.59), as a second-order feature, showed the strongest correlation with BD, 
independently of other TFs. Mean skewness and GLN decreased linearly from density a to d. Run-length nonuniform-
ity (RLN), as a second-order feature, showed moderate correlation with BD, but resulted in redundant being correlated 
with GLN. All other TFs showed only weak correlation with BD (range -0.49 to 0.49, p < 0.001) and were neglected.

Conclusion:  TA of PC-BCT images might be a useful approach to assess BD and may serve as an observer-independ-
ent tool.

Keywords:  Breast density, Breast neoplasms, Image processing (computer-assisted), Radiomics, Tomography (x-ray 
computed)
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Key points

•	 Analysis of texture features on spiral photon-count-
ing breast computed tomography is useful in the 
assessment of breast density.

•	 Texture analysis may provide as an observer-inde-
pendent, objective tool for breast density assessment 
and serve as quality control tool.

•	 Texture analysis may complement breast cancer risk 
estimation, reflecting parenchymal tissue characteris-
tics more precisely.
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Background
With an estimated 2.3 million new cases per year 
worldwide, breast cancer (BC) constitutes the most fre-
quently diagnosed cancer among women [1]. In addi-
tion to non-modifiable risk factors, such as genetic 
predisposition, age, and hormonal influences, breast 
density (BD) is known to be an independent risk fac-
tor for developing BC [2]. Epidemiological studies have 
shown that the risk for BC in women with dense tis-
sue may increase 2–6 times when compared to women 
with less dense tissue [3]. Although of high clinical 
importance, BD is often difficult to determine. Mam-
mographic BD is defined as the relative amount of glan-
dular tissue based on the mammographic appearance 
of parenchymal tissue on the mammogram. Besides the 
amount of fibroglandular tissue, parenchymal patterns 
appear to be indicative of the individual BC risk. The 
distribution of fatty, glandular and stromal breast tissue 
are assumed to be related to factors that are associated 
with the development of BC through unknown biologi-
cal mechanisms [4].

The BD assessment is implemented into the Breast 
Imaging Reporting and Data System (BI-RADS) atlas 
of the American College of Radiology, classifying mam-
mographic BD into four categories: a, describing almost 
completely fatty tissue; b, describing scattered fibroglan-
dular tissue; c, describing heterogeneous dense tissue; 
and d, describing extremely dense tissue [5].

Besides the increased individual risk of develop-
ing BC, BD represents an important parameter influ-
encing the diagnostic performance of screening 
mammography. While the sensitivity of mammograms 
for low-density breasts (categories a or b) is reported 
to be 87%, the sensitivity in dense breast tissue (catego-
ries c or d) decreases to 63% with the need of additional 
imaging. Fast and ubiquitously available, supplemen-
tal breast ultrasound is the modality of choice with 
an additional cancer yield of 2−4 cancers per 1,000 
patients and therefore, recommended in many guide-
lines [6, 7]. Contrast-enhanced breast magnetic reso-
nance imaging (MRI) is known to be the most sensitive 
imaging modality, even in detecting early stages of 
BC, one of its main indications being screening in 
high-risk patients [8]. Large patient cohorts like those 
investigated by the DENSE trial were able to show 
that supplemental breast MRI in women with nega-
tive mammograms results into about 17 additional 
cancers per 1,000 patients at the cost of an increased 
false-positive rate. However, false-positive rate strongly 
decreased in the follow-up round (from ~ 80 per 1,000 
to ~ 26 per 1,000 women). Additionally, the interval 
cancer rate was significantly lower when performing 

additional breast MRI compared to mammography 
only (2.5 per 1,000 versus 5.0 per 1,000 women) [9–12].

With the striving field of radiomics, on which artificial 
intelligence can be applied, there is growing evidence 
regarding textural features of parenchymal density as an 
inherent, independent, biologic risk factor for develop-
ing BC [13]. Several recent studies already evaluated the 
importance of parenchymal texture analysis (TA) for BC 
risk assessment based on mammography screening [4, 
14, 15]. It allows an objective assessment of tissue het-
erogeneity by evaluating the distribution and relationship 
of pixel- or voxel-based grey levels in the image. TA has 
already been successfully applied on computed tomog-
raphy (CT) and MRI for the prediction of pathologic 
features, prognosis, and response to therapy for various 
body compartments and can also potentially be applied 
to breast CT [16–20].

Spiral breast CT using photon-counting detector tech-
nology (photon-counting breast CT, PC-BCT) offers 
a truly three-dimensional breast imaging modality. 
Although not implemented in any guidelines yet, it might 
provide an alternative to mammography or breast-MRI 
for BC screening, combining improved patient comfort, 
fast image acquisition, and good visibility of microcalcifi-
cations [21, 22]. Regarding lesion detection, the sensitiv-
ity of PC-BCT in dense tissue was reported to be higher 
compared to digital mammography at comparable radia-
tion dose [23].

Existing studies on BD assessment using PC-BCT use 
the BI-RADS atlas to categorise BD levels, though the BI-
RADS BD scale could not be directly applied to the three-
dimensional nature of spiral PC-BCT [24]. Recently, 
Wieler et al. provided a new dedicated classification atlas 
in the assessment of BD based on lesion detectability 
[25]. Because PC-BCT is a new imaging modality, den-
sity assessment remains with high intra- and inter-reader 
variability, urging for an observer-independent and 
standardised classification system. Still, there is no stand-
ardised classification system, neither for mammograms, 
nor breast-CT, respecting parenchymal or biological pat-
terns for accurate BC risk assessment [26].

The main purpose of this study was to evaluate the dif-
ferences of radiomics features in different BD levels and 
to determine whether features derived from TA can be 
used to predict breast density in spiral PC-BCT.

Methods
Patient selection
This retrospective study was approved by the local eth-
ics committee and all patients signed informed consent 
for the scientific evaluation of the imaging and clinical 
data. All patients receiving PC-BCT examination at our 
institution signed informed consent about the “off-label” 
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use of PC-BCT, including all its benefits (no compres-
sion, improved lesion detectability compared to mam-
mography) and disadvantages (higher radiation dose, 
long evaluation time, not implemented in any guidelines 
yet) [21–23]. A retrospective search of patient data in 
the local database resulted in 520 patients receiving 
PC-BCT between January and August 2021. Patients 
with prior surgery or radiation therapy of the breast 
(n = 198), contrast-enhanced PC-BCT (n = 2) exams 
using intravenous injection of iodinated contrast agent, 
and unilateral examinations (n = 3) were excluded. In 
total, 317 patients suited inclusion criteria, resulting in 
634 PC-BCT examinations, used for further evaluation. 
Patient selection workflow is depicted in Fig. 1. None of 
the patients received additional mammography prior to 
PC-BCT.

PC‑BCT protocol
All examinations were performed on a dedicated spiral 
PC-BCT unit quipped with a cadmium-telluride pho-
ton-counting detector with an area of 280 × 50 mm2 
(nu:view, AB-CT, Advanced Breast-CT GmbH, Erlan-
gen, Germany). The maximum diameter of the field-of-
view was 190 mm and the scan length could be adjusted 
to the values 80, 120, and 160 mm depending on the 
size of the breast, resulting into 311-, 450-, or 588-slice 
exams, respectively. The x-ray tube exhibited a 0.3-mm 
focal spot size, with a 3-mm Al filtration. A fixed x-ray 
tube voltage of 60 kV was used, whereas the tube cur-
rent could be adjusted between 5 mA and 125 mA. In 

all patients, a tube current of 32 mA was applied. No 
intravenous injection of contrast agent was applied. The 
examination scans were acquired in a spiral mode with 
the high-resolution scan protocol with scan times of 
7, 9.5, and 12 s for the scan length of 80, 120, and 160 
mm, respectively. Image reconstruction was done in a 
standard mode with a soft kernel at 300 μm3 voxel size 
with 2 × 2 pixel binning using a Feldkamp-type filtered 
back projection algorithm [27].

BD classification
Breast density assessment was performed by a radi-
ology resident with 1 year of experience in breast 
imaging, using raw data images in the coronal plane. 
According to the standard procedure of our institu-
tion, breast density in BCT was categorised in four 
groups using the provided classification atlas by Wieler 
et al. [25].

a.	 Partial or complete involution with every lesion vis-
ible.

b.	 Scattered glandular tissue with lesions larger than 10 
mm conclusive visible.

c.	 Heterogeneous dense glandular tissue with lesions of 
10 mm potentially not visible.

d.	 Very dense tissue with restricted visibility of lesions.

Fig. 1  Flowchart depicting patient selection workflow
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After density assessment, texture analysis (TA) was 
performed in 50 randomly chosen patients of each den-
sity level to provide equal distribution.

Image selection and texture analysis
For the TA, 50 raw data images in the coronal plane of 
each patient were included, 25 of each side, depicting 
only representative slices of the breast tissue. Images 
showing bony structures or pectoralis muscle were 
excluded from the TA. In total, TA was performed 
on 10,000 images of 200 patients. TA was performed 
using an in-house developed script written in the pro-
gramming language MATLAB (The Math-Works Inc., 
Natick, MA, USA). A region of interest (ROI) was 
drawn freehand on coronal images, delineating the 
maximum continuous area of the breast tissue by the 
same radiology resident. ROIs were placed with a mar-
gin of approximately 5 mm from the skin to exclude 
subcutaneous fat tissue from analysis, as shown in 
Fig. 2. Mean ROI size was not calculated. The ROI was 
automatically propagated to the other 49 images, both, 
left and right breast, and multislice texture analysis was 
performed. As a first step, grey-level normalisation was 

performed to minimise intrascanner effects. Subse-
quently, 19 features were computed, as listed in Table 1. 
The first order features (4) were directly extracted from 
the histogram of all grey levels in the delineated ROI. 
Therefore, they provided information about the signal 
intensity values of each pixel. The second order features 
(15) were derived from the respective grey-level matri-
ces and included more information concerning grey-
level distribution by accounting for the relative position 
of each pixel with respect of the other pixels in the 
image. The grey-level co-occurrence matrix (GLCM) 
gave information about the grey-level distribution of 
pixel-pairs that were separated by a given offset. The 
grey-level run-length matrix (GLRLM) gave informa-
tion about the runs of pixels with the same grey-level 
values in a defined direction.

Human readout and reliability analysis
To evaluate the inter-reader reliability for BD assess-
ment, a representative subset of 60 images, 15 images 
of each density level, was created. Images were pre-
sented in random order and BD was assessed by two 

Fig. 2  Example definitions of regions of interest for each breast density level (a, b, c, or d) and corresponding histogram graphs summarised for all 
50 automatically evaluated images. Histograms depict the number of pixels found at each pixel value; whereas the left side on the x-axis represents 
lower signal values, the right side on the x-axis represents higher signal values. In the histograms, two peaks can be distinguished corresponding 
to fatty and glandular tissue, respectively. The ratio between the two peaks depends on the breast density, with class a mostly showing the peak 
corresponding to fatty tissue, whereas the histogram graph for class d demonstrating mostly the peak corresponding to glandular tissue
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expert readers with 6 years (J.W.) and 15 years (A.B.) 
of experience in breast imaging, in particular 4 years of 
experience in BCT imaging, and compared to the clas-
sification of the radiology resident.

Statistical analysis
In a first step, a one-way analysis of variance (ANOVA) 
of a linear model was performed for comparison of every 
texture feature among different BD levels with post hoc 
Bonferroni correction for pairwise comparison between 
groups, using the SPSS software package (SPSS ver-
sion 28.0.1.0, International Business Machines Corp., 
Armonk, NY, USA); only p values less than 0.05 were 
considered significant.

Confounded features identified in this step were 
excluded from further analysis. Further statistical analy-
sis was performed using R (RStudio, Version 2021.09.0, 
Boston, MA, USA). Continuous data were expressed as 
mean ± standard deviation if normal distribution could 
be assumed or otherwise as median and interquartile 
range. Categorical data were given in absolute amount. 
After applying ANOVA, the remaining features were 
evaluated for correlation between the different density 
levels with Spearman’s rho, with values ranging from 
-1 to + 1, indicating whether it is a positive or negative 
correlation. For our purpose Spearman’s rho > 0.80, was 
considered strong correlation, from 0.51 to 0.80 moder-
ate correlation, and from 0.11 to 0.50 weak correlation. In 
correspondence, values lower than -0.81 were considered 
strong negative correlation, from -0.51 to -0.80 moderate 
negative correlation, and from -0.11 to -0.50 weak nega-
tive correlation. Values from -0.1 to + 0.1 were consid-
ered as absent correlation. In all analyses, the threshold 
for assessing statistical significance was set to p < 0.05.

At last, a cluster analysis was performed between the 
BD levels to study the dependencies and associations 
among the features and to find the independent features. 
Moreover, multinomial logistic regression was performed 
using the R “caret” and “nnet” package (R Studio, Ver-
sion 2021.09.0) to evaluate the applicability of TA for BD 
assessment in PC-BCT. For that purpose, data was split 
into a training (70%) and test (30%) dataset. Probabilities 
for each category (from a to I) were calculated based on 
the maximum likelihood estimation.

For human readout and reliability analysis, ICC for 
BD assessment between the radiology resident and each 
of the two expert readers was then calculated. Accord-
ing to Landis and Koch, an ICC greater than 0.80 was 
considered “almost perfect agreement” [28] Further, 
inter-reader reliabilities between the three readers were 
assessed by calculating κ coefficients. According to 
Cohen [29], κ values from 0.61 to 0.80 were considered 
substantial and κ values from 0.to 0.90 were considered 
almost perfect. In a next step, each of the three readers 
performed ROI placement for single-slice TA on the 60 
images. Subsequently, coefficient of variation between 
readers was calculated for each texture feature to evalu-
ate reliability of the proposed model.

Results
Patient cohort
Based on exclusion criteria, image selection resulted 
in 317 patients corresponding to 634 PC-BCT per 
breast examinations. Mean age of patient cohort was 
55 years ± 9 (34–83). Of 317 patients, 58 (18.3 %) were 
assigned BD level a, 118 (37.2%) level b, 83 (26.2%) level 
c, and 58 (18.3%) level d. To provide equal distribution, 
we included 50 patients of each BD level in the final 
patient cohort for further TA. In total, 200 PC-BCT 

Table 1  Overview of texture features analysed for each image

First-order features Second-order features

Histogram-based Grey-level co-occurence matrix (GLCM) Grey-level run-length matrix (GLRM)

Variance Contrast Short-run emphasis (SRE)

Skewness Correlation Long-run emphasis (LRE)

Kurtosis Energy Grey-level nonuniformity (GLN)

Entropy Homogeneity Run-length nonuniformity (RLN)

Run percentage (RP)

Low grey-level run emphasis (LGRE)

High grey-level run emphasis (HGRE)

Short-run low-grey-level emphasis (SRLGE)

Short-run high-grey-level emphasis 
(SRHGE)

Long-run low-grey-level emphasis (LRLGE)

Long-run high-grey-level emphasis (LRHGE)
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examinations were evaluated, each examination consist-
ing of one image set for each side, corresponding to 400 
PC-BCT examinations in total. Most women received 
PC-BCT for screening purpose (n = 239), followed by 
new appearing mastodynia (n = 49). Less common pur-
poses for BCT examination were investigation of suspi-
cious palpable findings (n = 8), follow-up examination of 
BI-RADS 3 or 4 findings (n = 6), follow-up examinations 
of benign lesions (n = 5), mastopathia (n = 8), secreta-
tion of the mamilla (n = 1), or dysesthesia of the breast 
(n = 1). In our patient cohort 135 women received addi-
tional breast ultrasound, of which 95 were referred for 
screening purpose.

Texture analysis
Mean TA time for multislice datasets (50 images) for 19 
TFs was 71 s. Among the different BD levels, ANOVA 
showed significant differences for all TFs (all p values < 
0.001). In Fig. 3 the dependency of the median value of 
each TF on BD is depicted. The majority of TFs shows 
a systematic change for either increasing or decreasing 
BD. Bonferroni correction was able to exclude further 
TFs that showed no significant correlation BD levels. In 
summary, the following 11 TFs were included for further 
analysis: variance, skewness, kurtosis, entropy, contrast, 
correlation, energy, homogeneity, grey-level nonuniform-
ity (GLN), run-length nonuniformity (RLN), and short- 
run low-grey-level emphasis (SRLGE). Table  2 provides 
an overview of TF descriptives (mean, standard devia-
tion, 95% confidence interval) and corresponding p val-
ues after Bonferroni correction.

Of the remaining 11 TFs, 10 correlated significantly 
with the BD level (Table 3) according to Spearman’s rho. 
Short-run low grey-level emphasis (SRLGE) was the only 
feature which showed no significant correlation with the 
BD level (rho = 0.41, p = 0.4). Moreover, SRLGE was 
independent of most of the other features, but showed 
high negative correlation with skewness. Skewness, 
as a first-order feature, showed strong negative cor-
relation with the density level (rho = -0.81, p < 0.001), 
and appeared to be mostly independent of the other 
features. Cluster analysis exhibited strong correlation 
within the remaining first-order TFs variance (kurtosis 
and entropy), without any benefit in distinguishing BD 
levels (r 0.43, -0.35, -0.49, all p values < 0.001); neither 
did contrast, correlation and homogeneity (correlation 

coefficients 0.48, 0.49, and -0.31; all p values < 0.001). 
GLN, as a second-order feature, showed moderate cor-
relation with skewness and BD (correlation coefficients 
0.51 and -0.59, p values < 0.001), but appeared to be also 
mostly independent of the other features. RLN, as the 
remaining second order feature, revealed moderate neg-
ative correlation with BD (correlation coefficient -0.66, 
p < 0.001), but also showed moderate to strong nega-
tive correlation with the other first order features (vari-
ance, kurtosis, entropy). Moreover, RLN showed strong 
correlation with GLN (correlation coefficient 0.8, p < 
0.001), therefore, seemed to be redundant and was fur-
ther rejected. This left Skewness and GLN as the features 
that showed a highest independence in the assessment of 
BD at PC-BCT. Figure 4 graphically summarised the cor-
relation within the TFs in hierarchical order for a better 
overview. Referring to the mean values, both Skewness 
and GLN appeared to showed a “linear” decrease with 
increasing BD (boxplots in Fig. 5). Multinomial logistic 
regression revealed an overall accuracy on the training 
dataset of 80.0%. Confusion matrices for the test data-
set are listed in Table 4. Highest accuracies were reached 
for BD levels a (86.8%) and d (84.5%), whereas predic-
tions for levels b (69.0%) and c (75.5%) were inferior in 
our model.

Human readout
Interrater correlation for BD assessment between the 
radiology resident and the two expert readers was almost 
perfect (ICC 0.91; 95% confidence interval 0.88−0.94). κ 
values between the radiology resident and each of the 
two readers were 0.86 (J.W.) and 0.83 (A.B.) reflecting an 
almost perfect inter-reader reliability. The overall agree-
ment between the radiology resident and reader 1 was 
90% between the resident and reader 2 was 88%. The 
confusion matrices of the two expert readers, compared 
to the classification of the radiology resident are shown 
in Table 5 (p values were < 0.001 in each case of statis-
tical comparison). Coefficients of variation for 19 TFs 
varied from -6.9% to 10.9%. The majority of TFs showed 
strong reliability with variation coefficients < 5%. Fea-
tures which showed the strongest correlation with BD 
also showed the highest coefficients of variance: skew-
ness (-6.93%), GLN (10.9%) and RLN (8.3%). Mean val-
ues for each TF and coefficients of variance are listed in 
Table 6.

(See figure on next page.)
Fig. 3  Mean values for each texture feature are dependent on different breast density levels (a, b, c, and d). GLN grey-level nonuniformity, HGRE 
High grey-level run emphasis, LGRE Low grey-level run emphasis, LRE Long-run emphasis, LRHGE Long-run high-grey-level emphasis, LRLGE 
Long-run low-grey-level emphasis, RLN Run-length nonuniformity, RP Run-percentage, SRE Short-run emphasis, SRHGE Short-run high-grey-level 
emphasis, SRLGE Short-run low-grey-level emphasis
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Fig. 3  (See legend on previous page.)
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Discussion
In our study, we investigated the potential of TA for 
BD classification in PC-BCT. Except of one feature, the 
majority of TFs revealed highly significant differences 

within BD levels. However, correlation coefficients for 
most TFs revealed only weak correlation with BD levels 
and were neglected. We were able to derive two TFs, one 
first-order feature (skewness) and one second-order fea-
tures (GLN) that demonstrated the strongest correlation 
with BD density on PC-BCT and were independent of 
other TFs, therefore, particularly suitable to assess BD in 
breast-CT.

While BD is known to be an independent risk factor 
for the development of BC [2], besides the amount of 
breast glandular parenchyma itself, its distribution 
is also relevant in BC risk assessment. Following the 
pioneering work of Wolfe et  al. in 1976 [30] numer-
ous studies showed the effect on parenchymal pat-
terns on the individual BC risk [4, 14, 15, 26]. In the 
common hypothesis, the distribution of fatty, glandu-
lar, and stromal breast tissue is related to factors that 
are associated with the development of BC through 
unknown biological mechanisms [4]. However, the 
distribution of the glandular tissue, such as “scat-
tered” and “heterogeneously dense” was not imple-
mented into the BI-RADS classification atlas until the 
revision in 2013 [5].

Table 2  Texture feature descriptives and p values for post hoc Bonferroni correction for each feature

GLN Grey-level nonuniformity, HGRE High grey-level run emphasis, LGRE Low grey-level run emphasis, LRE Long-run emphasis, LRHGE Long-run high-grey-level 
emphasis, LRLGE Long-run low-grey-level emphasis, RLN Run-length nonuniformity, RP Run-percentage, SRE Short-run emphasis, SRHGE Short-run high-grey-level 
emphasis, SRLGE Short-run low-grey-level emphasis

*Only valid for level c compared to level d, all other p values being < 0.001

**Only valid for level a compared to level b, all other p values being < 0.001

Feature Mean Standard deviation 95% confidence interval p value after

Lower Upper Bonferroni correction

Variance 187.03 74.15 185.57 188.48 < 0.001

Skewness 0.22 1.0 0.20 0.24 < 0.001

Kurtosis 0.34 1.76 0.31 0.38 < 0.001

Entropy 14.76 10.93 14.55 14.97 < 0.001

Contrast 0.93 0.05 0.93 0.93 < 0.001

Correlation 0.01 0.01 0.06 0.06 0.002

Energy 0.42 0.08 0.41 0.42 < 0.001

Homogeneity 16,193 0.30 5.44 5.45 0.01

SRE 0.89 0.05 0.89 0.89 1.0 *

LRE 1.77 1.66 1.74 1.81 0.1 **

GLN 468.09 176.12 464.64 471.54 < 0.001

RLN 9,432.94 4,143.13 9,351.72 9,514.16 < 0.001

RP 0.85 0.62 0.85 0.85 0.9 *

LGRE 0 0 0 0.4 **

HGRE 1,156.60 34.88 1,155.92 1,157.29 1.0

SRLGE 0 0 0 0.006

SRHGE 1,026.89 52.03 1,025.87 1,027.90 1.0 *

LRLGE 0.03 0.12 0.02 0.03 0.6

LRHGE 2,087.82 1,428.11 2,059.82 2,115.81 0.4

Table 3  Spearman’s correlation coefficient and p values for each 
texture feature and breast density level

GLN Grey-level nonuniformity, RLN Run-length nonuniformity, SRLGE Short-run 
low-grey-level emphasis

Texture feature Spearman correlation 
coefficient (rho)

p value

Variance 0.43 < 0.001

Skewness -0.81 < 0.001

Kurtosis -0.35 < 0.001

Entropy -0.49 < 0.001

Contrast 0.48 < 0.001

Correlation 0.49 < 0.001

Energy 0.47 < 0.001

Homogeneity -0.31 0.003

GLN -0.59 < 0.001

RLN -0.66 < 0.001

SRLGE 0.41 0.363
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While amount and distribution of glandular tissue 
are more likely associated with the individual BC risk, 
the transparency of breast tissue is an important factor 
regarding lesion visibility. Because x-ray absorption of 
glandular tissue and soft tissue lesions is identical, lesion 
detectability is highly restricted in dense breasts. Addi-
tionally, the effect of tissue-overlay in mammography 
increases this weak spot. With PC-BCT we are able to 
observe fatty septae within glandular tissue, which are 
unique for this new imaging technique. Based on this 
finding, Wieler proposed a new density atlas for breast 
density for spiral PC-BCT [25].

Although Tice et  al. [31] and Brentnall et  al. [32] 
already demonstrated that considering BD descrip-
tors improves the accuracy of BC risk assessment in the 
screening population, the discriminative accuracy of 
many models implementing BD in BC risk estimation 
remains limited on an individual level [33]. Of note, the 
standard model for BC risk estimation provided by Gail 
and Claus is still based on non-modifiable risk factors, 
such as demographics and genetics [34, 35]. However, the 
interpretation of BD in mammograms, remains observer-
dependent, which might introduce unwanted variability 
in BC risk assessment. Whereas the relationship between 
BD and the risk for BC has already been elucidated to a 
certain extent, the correlation between parenchymal tex-
ture features and cancer risk still remains to be clarified 

[4]. TA has been applied on lesion characterisation or 
even in the BC risk assessment regarding breast paren-
chymal distribution with promising results [15]. How-
ever, the interrelation between TA data and underlying 
biological properties has not yet been resolved.

There is large body of literature concerning mammo-
graphic texture features for BC detection [15]. Keller 
et al. [36] compared different prediction models and dis-
covered that TFs outperform common prediction models 
based on the amount of tissue only. Nevertheless, con-
ventional mammograms are superimposed projection 
images. Therefore, TFs may reflect skin, subcutaneous fat 
or overlay effects, i.e., anatomic noise reducing the pre-
dictive value of TA in two-dimensional mammograms.

Digital breast tomosynthesis is a pseudo-three-
dimensional modality obtained using multiple low-dose 
two-dimensional x-ray projections with superior tissue 
visualisation by separating skin and subcutaneous fat 
from the deeper parenchymal tissue layers. Kantos et al. 
[4] investigated the association of different texture fea-
tures with BD in DBT compared to conventional mam-
mograms. They showed that TFs in tomosynthesis have 
a stronger dependency on the amount of glandular tissue 
compared to two-dimensional mammogram. Neverthe-
less, tomosynthesis has low spatial resolution along the 
z-axis and, therefore, remains not completely satisfactory 
for TA.

Fig. 4  Correlation matrix for the remaining 11 texture features, sorted by hierarchical order. GLN Grey-level nonuniformity, RLN Run-length 
nonuniformity, SRLGE Short-run low-grey-level emphasis
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Spiral PC-BCT instead, is a truly three-dimensional 
breast imaging modality suitable for TA. To the best 
of our concerns, our study is the first investigating the 
potential of TA in spiral PC-BCT, though there have been 
investigations on cone-beam CT or positron emission 
tomography/CT in BC patients [18, 37]. Due to its three-
dimensional nature, spiral PC-BCT can provide around 
3,500 images (including raw data images and high-res-
olution images), resulting into a systematically higher 

evaluation time. To date, the classification for breast den-
sity in PC-BCT is not implemented in the BI-RADS clas-
sification system and its estimation is highly subjective to 
the radiologist’s perception. Therefore, there is a urgent 
need for an objective and observer-independent classifi-
cation system of BD in PC-BCT.

In recent studies, the implementation of machine 
learning algorithms using deep convolutional neural net-
works (CNNs) for the classification of BD in mammog-
raphy, as well as in spiral PC-BCT, was described [38]. 
In their latest work, Landsmann et  al. [39] reported an 
accuracy of 85.5% for density assessment in PC-BCT. 
However, their model appeared to be less linked to the 
fatty-septae criteria, compared to human decision-
making. Typically, in deep learning applications, spatial 
resolution of images needs to be reduced due to techni-
cal constraints regarding hardware memory and calcula-
tion time, which is why deep CNNs might be used for 
BD classification based on the amount and distribution 
of parenchyma, however, missing the additional feature 
of the presence of fatty septae in PC-BCT images. Radi-
omics can detect subtle changes in parenchymal texture, 
which deep learning might miss. TA therefore, might be 
able to investigate imaging features linked to fatty sep-
tae, which might be substituted by a deep CNN in the 
training process. For example, skewness and SRLGE 
showed strong negative correlation with each other, 
but were mostly independent of all other TF. Moreover, 
skewness showed the strongest negative correlation with 
the density level, whereas SRLGE did not show signifi-
cant correlation with BD at all. This may propose, that 
skewness and SRLGE show the opposite underlying 
(unknown) biological difference. In our study we observe 
similar accuracy (80%) for BD assessment compared to 
the provided deep learning approach describe by Lands-
mann et al. [39]. Whereas deep learning requires a large 
amount of data and high computational power to be 
trained, TA can also be performed with a small num-
ber of images, hence particularly suitable for this new 
imaging technique. Further studies will have to show 
whether training a deep learning algorithm with selected 
TFs might improve the accuracy of BD assessment in 
PC-BCT.

There are several limitations of this study. First, the 
single-centre retrospective design including a small num-
ber of patients. Second, because of multislice analysis, the 
same ROI was applied on multiple images, which might 
introduce some bias in the training data. Third, we only 
examined the influence of 19 TFs, whereas other stud-
ies on TA evaluate more TFs of even higher-orders TFs. 
However, recent studies on TA in different tissues (e.g., 
breast, lung, uterus) showed that a lot of the higher-order 
TFs were not relevant for the differentiation of tissue [17, 

Fig. 5  Boxplots of mean values of the two independent texture 
features derived from texture analysis: skewness and grey-level 
nonuniformity (GLN)

Table 4  Confusion matrices for multinomial logistic regression 
on the test dataset

Breast density level

Predicted a b c d

a 651 98 0 1

b 127 517 104 1

c 0 103 567 80

d 0 4 112 634
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40, 41]. Fourth, contrast-enhancement of lesions and the 
glandular parenchyma using iodinated contrast agents 
may provide additional information on malignancy and 
hormonal stimulation of breast tissue. However, the 
assessment of effects caused by contrast agents was out 
of the scope of this study.

In conclusion, we were able to show that TA can pre-
dict BD with high accuracy. Therefore, TA might be a 
useful quantitative tool in the classification of BD in spi-
ral PC-BCT, taking into account fatty septae in glandular 
parenchyma, which are a unique feature of this approach 
compared to other breast imaging modalities. We also 

Table 5  Breast density assessment (a–d) for 60 representative breast-CT images, performed by two readers (1: J.W.; 2: A.B.), compared to 
classification given the radiology resident (A.L.)

BD breast density
a almost entirely fatty tissue
b scattered glandular tissue
c heterogenous dense glandular tissue
d homogenous dense glandular tissue

Radiology resident Reader 1 Reader 2

BDa BDb BDc BDd BDa BDb BDc BDd

BDa 15 0 0 0 15 0 0 0

100% 0% 0% 0% 100% 0% 0% 0%

BDb 0 16 1 0 1 16 0 0

0% 94% 6% 0% 6% 94% 0% 0%

BDc 0 2 13 0 0 4 9 2

0% 13% 87% 0% 0% 27% 60% 13%

BDd 0 0 3 10 0 0 0 13

0% 0% 23% 77% 0% 0% 0% 100%

Table 6  Mean values and coefficients of variance for 19 texture features for the subset of 60 images

GLN Grey-level nonuniformity, HGRE High grey-level run emphasis, LGRE Low grey-level run emphasis, LRE Long-run emphasis, LRHGE Long-run high-grey-level 
emphasis, LRLGE Long-run low-grey-level emphasis, RLN Run-length nonuniformity, RP Run-percentage, SRE Short-run emphasis, SRHGE Short-run high-grey-level 
emphasis, SRLGE Short-run low-grey-level emphasis

Texture feature Reader 1 (mean) Reader 2 (mean) Reader 3 (mean) Coefficient 
of variance

Variance 189 186 186 3.23

Skewness 0.653 0.491 0.578 -6.93

Kurtosis 0.412 0.295 0.521 -2.66

Entropy 11.3 11.5 11.6 4.13

Contrast 0.944 0.944 0.942 0.21

Correlation 0.006 0.006 0.006 4.85

Energy 0.443 0.437 0.438 1.11

Homogeneity 5.37 5.41 5.39 0.57

SRE 0.874 0.878 0.877 0.4

LRE 1.82 1.77 1.79 1.91

GLN 1,860 1,550 1,800 10.85

RLN 33,000 28,800 32,200 8.29

RP 0.829 0.835 0.833 0.57

LGRE 0.001 0.001 0.002 5.71

HGRE 1,140 1,150 1,140 0.49

SRLGE 0.001 0.001 0.001 5.6

SRHGE 1,000 1,010 1,000 0.63

LRLGE 0.002 0.003 0.005 6.68

LRHGE 2,300 2,210 2,260 2.76
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determined two independent TFs that seem particularly 
suitable to distinguish between different BD levels. These 
individual features might also be a useful tool in the indi-
vidual BC risk assessment by reflecting parenchymal 
composition more precisely.
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