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Abstract

Background: Though abnormal iron deposition has been reported in specific brain regions in multiple sclerosis
(MS), no data exist about whether the overall quantity of iron in the brain is altered or not. We aimed to determine
whether the noted aberrant iron deposition in MS brains was a problem of overall load or regional distribution in a
cohort of MS patients.

Methods: An experienced neuroradiologist, a radiology software engineer, and four neurologists analysed data
from quantitative susceptibility maps reconstructed from 3-T magnetic resonance brain images of 30 MS patients
and 15 age- and sex-matched healthy controls. Global brain iron load was calculated, and the regional iron
concentrations were assessed in 1,000 regions of interest placed in MS lesions in different locations, normal
appearing white matter, thalami, and basal ganglia.

Results: Global brain iron load was comparable between patients and controls after adjustment for volume (p =
0.660), whereas the regional iron concentrations were significantly different in patients than in control (p < 0.031).
There was no significant correlation between global iron load and clinical parameters, whereas regional iron
concentrations correlated with patients’ age, disease duration, and disability grade (p < 0.039).

Conclusions: The aberrant iron deposition noted in MS seems to be a problem of regional distribution rather than
an altered global brain iron load.
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Key points even after adjustment for the patients’ age and brain at-
rophy [1, 2]. Iron was found to be elevated in deep grey
matter, ie., caudate and putamen [3], and reduced in
thalami [4-6] and normal-appearing white matter
(NAWM) [7-9] in patients with MS when compared to
their healthy counterparts [2, 10-12]. It was also found
to be elevated around the MS plaques [13] and reduced
inside the plaques [14, 15]. The data, however, are con-
flicting among the studies. Iron aberrant deposition in
MS was reported to occur in almost all stages and phe-
notypes of MS, starting early at the clinically isolated
syndrome phase [11]. This suggested that iron has a

e Global brain iron load in multiple sclerosis (MS) is
comparable to controls.

e Iron aberrant distribution in MS is a problem of
regional distribution, not of global load.

e Regional, but not global, brain iron load is correlated
with clinical characteristics.

Background
Iron has been consistently noted to be aberrantly depos-

ited in the brains of multiple sclerosis (MS) patients
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contributing role in the pathogenesis of the disease even
in early stages, not a mere consequence of myelin dam-
age and cell destruction [16].

Being a consistent finding in different studies, the re-
search was directed towards identifying its correlation
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with the clinical profile [9, 17, 18]. Though the results
are conflicting between the studies, the aberrant iron de-
position in specific brain regions was reported to be
mainly related to the patients' age, disease duration, and
degree of disability assessed by the expanded disability
status scale (EDSS) [19, 20]. Iron deposition around the
edges of MS lesions was reported to be a marker of poor
disability progression [21].

The exact mechanism of iron involvement in the patho-
genesis of MS remains elusive. To date, it is not obvious
whether iron deposition in MS patients is just an epiphe-
nomenon, a consequence of the ongoing pathology, or an
actual mediator of disease pathogenesis [22]. Initial at-
tempts to understand the etiopathogenesis of iron depos-
ition in MS proposed a theory of systemic iron overload
[23, 24]. However, peripheral markers of iron metabolism
and hemochromatosis genes were not different in MS pa-
tients compared to controls [25-27]. These findings ne-
gated the systemic iron overload problem in MS; and
concluded a focal iron pathology confined to the central
nervous system (CNS) [28]. Several postulations were
made to explain the noted aberrant iron deposition in the
CNS of MS patients. Altered iron influx or clearance from
the brain via a disrupted blood-brain barrier (BBB) was
proposed [28, 29]. Chronic cerebrospinal venous insuffi-
ciency, venous congestion, and subsequent red blood cell
extravasation and iron deposition were also suggested
[30]. Accordingly, several trials were conducted to evalu-
ate the efficacy of chelation therapy and endovascular in-
terventions in MS [31, 32]. The results of these trials,
however, were essentially negative [31, 32]. Recent data
suggested that the increased iron concentration in specific
regions in MS brains is partially explained by volume loss
without concomitant loss of iron load [33]. This, however,
does not explain the observed low iron concentration in
other regions such as the thalami.

While the literature points to a focal CNS iron path-
ology, it remains unclear whether the overall CNS iron
load in MS patients is increased, reduced, or altered.
Clarification of this point would be of help for future
therapeutic implications. The chelation therapeutic
agents used in the available studies in the literature do
not cross the BBB [31]. Whether there is a need to de-
velop chelation agents that can cross the BBB or not de-
pends on the overall brain iron load. The currently
published studies reported abnormal iron quantities in
specific brain areas, but none mentioned if the global
brain iron load was altered.

Therefore, in this study, we aimed to assess the global
iron load as well as the regional iron concentrations in
different locations (MS lesions, NAWM, thalami, and
basal ganglia) in a cohort of MS patients in comparison
to healthy controls and to assess their correlation with
the clinical profile.
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Methods

Study design and patient selection

This was an observational cross-sectional study con-
ducted on 30 adult patients with relapsing-remitting MS
(RRMS) diagnosed according to the revised 2017 McDo-
nald’s criteria [34] and 15 age- and sex-matched healthy
controls. Of the 30 patients recruited, 10 had benign MS
(EDSS < 2 after the first 5 years of disease onset [35])
and were on interferon-beta therapy, 10 had aggressive
MS (EDSS = 4 within the first 5 years of disease [36])
and were on interferon-beta therapy, and 10 patients
were disease-modifying therapy (DMT)-naive. All re-
cruited patients had a disease duration between 5 to 10
years to limit the potential confounding effect of disease
duration on brain iron concentrations [37].

Imaging processing and iron measurement

All patients and control subjects underwent 3-T mag-
netic resonance imaging (Philips Ingenia 3-T MRI-
scanner, Philips Healthcare, the Netherlands) using a 32-
channel head coil. The protocol included three-
dimensional (3D) T1-weighted, two-dimensional T2-
weighted, 3D fluid-attenuated inversion recovery
(FLAIR), regular diffusion-weighted images echo-planar
imaging, and multi-echo susceptibility-weighted images
(SWI) obtained with thin cuts at 0.5 mm. The obtained
multi-echo SWI of all subjects was processed as previ-
ously described by Meineke et al. [38] to reconstruct
quantitative susceptibility maps (QSM) (field of view, an-
teroposterior, feet-to-head, right-to-left 240 x 145 x 210
mm?; acquired voxel 0.6 x 0.6 x 2.0 mm?; flip angle 14°;
echo time 3.5 ms; A echo time 4 ms; 7 echoes; repetition
time 31 ms; bipolar readout; bandwidth 275.9 Hz/vx;
sensitivity encoding, Phase/Slice 1.8 x 1.2) and a T1-
weighted magnetisation-prepared turbo field-echo se-
quence, used for model-based segmentation (field of
view 240 x 240 x 170 mm?; acquired voxel 0.94 x 0.94 x
1.0 mm?; flip angle 8°, echo time 8 ms; turbo factor 222;
inversion delay 1,000 ms; bandwidth 191.5 Hz/vx; sensi-
tivity encoding 1.0 x 2.2).

Assuming there was only one volume in the
DICOM (Digital Imaging and COmmunications in
Medicine) directory in SWI, echo was loaded at TEs
of 7.2 ms, 13.4 ms, 19.6 ms, and then 25.8 ms. A
mask was generated from the first echo of the QSM
scan using some magnitude thresholding and then,
the skull-stripping was started. After that, field map-
ping from echoes was performed, rescaled from KHz
to Hz, and the weight data were calculated. Final
QSM maps were generated (Fig. 1) where iron quanti-
fication was accessible. For iron quantification, Multi-
image Analysis Graphical User Interface (Mango) soft-
ware version 4.0.1 (University of Texas, San Antonio,
USA) for windows was used [39-42].
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Fig. 1 Magnetic resonance image of the brain of a 36-year-old lady diagnosed with relapsing-remitting multiple sclerosis. Three different imaging
series of corresponding axial cuts are demonstrated, i.e, three-dimensional fluid-attenuation inversion recovery images, susceptibility-weighted
images, and the reconstructed quantitative susceptibility maps
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To measure global iron load, the brain was first ex-
tracted and selected using a threshold to a region of
interest (ROI) as demonstrated in the software manual
[39]. The sum iron load of all slices (130 slices per sub-
ject) was calculated (Fig. 2I). Brain volume for all sub-
jects was also measured to adjust for the potential
impact of brain atrophy in MS patients on the calculated
iron load. The brain volume was measured from fluid-
attenuated inversion recovery images (Fig. 2II). The
brain was selected, excluding the ventricular system and
the sulci; then, the volume was measured as demon-
strated in the Mango software manual [39].

To measure regional iron concentrations, fixed size (3-
mm spheres) ROIs were placed in MS lesions at different
locations (periventricular, cortical/juxtacortical, and infra-
tentorial), NAWM, thalami, and basal ganglia (caudate, pu-
tamen, and globus pallidus) (Fig. 3). Because MS lesions
were not visible on quantitative susceptibility maps (Fig.
3(Ic)), a 3D FLAIR image (Fig. 3(Ia)) was overlaid over the
QSM image to place the ROIs inside the MS lesions (Fig.
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3(Ib). The overlay was a semiautomatic image coregistra-
tion tool in the Mango software. Before further analysis, the
radiologist manually revised that the images are strictly cor-
egistered for all aspects, including the cortical and the ven-
tricular outlines. The overlay was removed, and the iron
was quantified in the QSM image (Fig. 3-Ic). In the healthy
controls, ROIs were placed in similar locations (Fig. 4).

Data collection and statistical analysis

Along with the radiological data, we collected demo-
graphic and clinical data from the patients’ medical re-
cords, and assessment of the EDSS, nine-hole peg test,
timed-25-foot walking (T25FW) test, and symbol digit
modality test were performed during an interview with
the patient. Data were analysed using IBM SPSS software
package version 20.0 (IBM Corp., Armonk, NY, USA).
Kolmogorov-Smirnov test was used to verify the normality
of the distribution of variables. Mean and standard devi-
ation (SD) were used to summarise parametric continuous
variables. Median and interquartile ranges were used to

ron load
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Fig. 2 Measurement of global iron load (I) and brain volume (Il). la, 1b, and lc show the brain selected in quantitative susceptibility maps in axial,
coronal, and sagittal views, respectively. Image Id shows the iron load (vertical axis) in 130 slices (horizontal axis) of one subject. The global iron
load for each subject was the sum of the iron concentration in the 130 slices. Images lla, llb, and llc show the brain selected in three-
dimensional fluid-attenuation inversion recovery series to measure the brain volume. The results of volume analysis for each subject are the
mean, sum, standard deviation, size, and count as shown in lld. The sum was the volume of the brain included in the final analysis

IId
Description Mean
[Volume | 142.5 3.473ES
SD Size Count
| 363.9611] 1.511E7| 2.437E7
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Fig. 3 Measurement of regional iron in a 25-year-old man with MS. Images la, Ib, and Ic represent the steps of measuring iron concentrations in
the normal appearing white matter (region of interest [ROI] 1) and multiple sclerosis lesions (ROl 2). la is an axial three-dimensional fluid-
attenuation inversion recovery (3D FLAIR) film demonstrating the MS lesions. Ib is the 3D FLAIR image overlayed onto the quantitative
susceptibility mapping, and Ic is the quantitative susceptibility map. Similar steps are demonstrated in lla, llb, and llc to measure iron
concentrations in the deep grey matter: caudate (ROls 3 and 4), putamen (ROIs 5 and 6), globus pallidus (ROIs 7 and 8), and thalami (ROIs 9

J

summarise nonparametric continuous variables. Categor-
ical variables were summarised as numbers and percent-
ages. To compare two groups, Student’s ¢t and Mann-
Whitney U tests were used for parametric and nonpara-
metric variables, respectively. Kruskal-Wallis test was used
to compare nonparametric variables between more than
two groups. Spearman coefficient was used to test the cor-
relation between nonparametric continuous variables. The
significance of the results was judged at 0.050.

Ethical considerations

Ethical approval was obtained from the ethical commit-
tee of Alexandria University Faculty of Medicine (Insti-
tutional review board protocol number: 00012098),
which  operates according to the International

Conference of Harmonization Good Clinical Practice
and applicable local and institutional regulations and
guidelines [35]. The ethical committee has a federal-
wide assurance [36] from 2010 (number: 00018699). The
EC approved this study on the 24th of October 2019
(serial number: 0201291). Written informed consent was
obtained from all subjects prior to recruitment to the
study.

Results

Sample demographic and clinical characteristics are sum-
marised in Table 1. Age, sex, and disease duration were
comparable between the studied groups (p = 0.075). In
Supplementary Table 1, the number of ROIs placed at
each location is detailed. Table 2 summarises the global
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Fig. 4 Measuring regional iron load in a 39-year-old man with relapsing-remitting multiple sclerosis (A, B) in periventricular lesions and
measuring iron load in corresponding locations in a healthy 44-year-old male control subject. A represents an axial three-dimensional fluid-
attenuation inversion recovery (3D FLAIR) film of the patient demonstrating two periventricular lesions (right and left). The 3D FLAIR film was
overlayed on the quantitative susceptibility map as depicted in image B and the transparency was set to 50% to visualise both the quantitative
susceptibility mapping (QSM) and the 3D FLAIR images. Two regions of interest (ROIs), shown as red and violet circles, were placed in the
periventricular lesions and the ROIs were analysed on the QSM image. C Represents a corresponding axial 3D FLAIR cut of a healthy man. Similar
steps were performed to measure iron in approximate locations corresponding to the MS periventricular lesions

QSM with 3D FLAIR overlay

\

and regional iron load in the patients and healthy controls.
Even after adjusting the brain volume, patients with MS
had a similar global iron load to the healthy controls. The
median global iron load was -20.994 parts per billion
(ppb)/cm?® in MS patients and -14.577 ppb/cm® in con-
trols (p = 0.660). No significant differences were seen
within the subgroups of patients.

For the regional iron concentrations, patients had
significantly high iron concentrations in NAWM
(-0.007 ppb versus -0.012 ppb, p = 0.031) and signifi-
cantly low iron concentrations in MS lesions (-0.029
ppb versus 0.004 ppb, p < 0.001), particularly the
periventricular (-0.027 ppb versus -0.009 ppb, p =
0.001) and cortical/juxtacortical lesions (-0.033 ppb
versus 0.013 ppb, p = 0.017) in comparison to the
healthy controls (Fig. 5). The subgroup analysis
showed significantly higher iron concentrations in the
basal ganglia of aggressive MS than benign MS (0.013

ppb versus 0.009, p = 0.042) and significantly lower
iron concentration in MS lesions in DMT-naive
patients than benign MS (-0.047 ppb versus -0.004,
p = 0.037). No significant differences were seen in the
regional iron concentrations in DMT-naive and
aggressive MS (p = 0.061). Of interest, there was a
significant difference between the iron concentrations
between the different locations within each group
(i.e., between the basal ganglia, thalami, NAWM, and
MS lesions). Still, there was no difference in the iron
concentrations between the MS lesion at different
sites (i.e., periventricular, juxtacortical, and infraten-
torial lesions). An exception was the aggressive MS
subgroup, where iron concentrations were highest in
the periventricular lesions (p = 0.032). It is to be
noted that all MS lesions included in the analysis
were chronic inactive lesions with no iron rim at
their edges.
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Table 1 Sample descriptive analysis (n = 45)
MS patients (n = 30) HC P, P,
Total Benign (n = 10) Aggressive (n = 10) Naive (n = 10) (n=15)
Age in years® 345+ 7.51 302 £ 563 373+ 74 36.3 + 10.09 36.27 £1027 0512 0075
Gender, n (%)
- Male 7(233) 2 (20) 2 (20) 3 (30) 4(26.7) 0540  0.830
- Female 23 (76.7) 8 (80) 8 (80) 7 (70) 11 (73.3)
Disease duration® 7.0 (6-7.25) 6 (5-7.25) 6.50 (5.75-7.25) 7 (6-9) - - 0.379
DMT duration® 2(0-3) 2.5 (1.75-3.5) 3(2.75-4.25) - < 0001*
EDSSP 35 (25-4.13) 2 (2-2) 4 (4-5.87) 35 (24-6.0) - - 0.001*
Total number of relapsesb 5.0 (4.0-7.0) 4 (3.75-6.25) 7 (6-11.25) 45 (2.75-6) - - 0.041*
SDMT? 33.30 + 14.99 398 + 13.06 271 +£12.21 30+ 1776 - - 0.168
9-HPT®
- Right hand 23.86 (22.03-3145) 216 (194-23.2) 28.1 (23.8-43.1) 241 (222-34.1) - - 0.011*
— Left hand 2811 (2452-37.63)  25.1 (23.0-27.3) 30.9 (26.3-46.6) 308 (26.5-39.1) - 0.052
T25FW test® 8.84 (7.09-12.82) 6.9 (6.5-83) 125 (8.6-17.4) 1.1 (74-166) - - 0.009*

9-HPT Nine hole-peg hole test, DMT Disease-modifying therapy, EDSS Expanded disability status scale, HC Healthy controls, MS Multiple sclerosis, n Number, SDMT
Symbol digit modality test, T25FW Timed 25-foot walking, p;* Difference between the patients and HC, p,’ Difference between subgroups of patients

“Median + SD
PMedian (IQR)
*Statistically significant

The correlation between the clinical profile and iron
load (global and regional) is depicted in Table 3. Of
note, no significant correlation was detected between the
global iron load and any of the studied clinical parame-
ters. The regional iron concentrations, in contrast, had a
significant correlation with several parameters. Higher

iron concentrations in the basal ganglia were correlated
with worse EDSS scores (p = 0.029). Lower iron concen-
trations in the thalami were correlated with higher
T25FW test scores (p = 0.027). Iron concentrations in
the NAWM were inversely correlated with the disease
duration (p = 0.012) and T25FW test (p = 0.039). Iron

Table 2 Brain global and regional iron concentrations in the studied sample

MS patients (n= 500 ROIs) HC Po Py Py Ps
Total Benign  Aggressive  Naive (n= 500 ROls)
Brain volume in cm?° 1,903 1,909 1,887 1,911 2,075 0.047% 0.924 0.995 0.789
Global iron load in ppb, median®  -4.2808 -4.1009 -4.6923 -4.1983 -2.9640 0.647 0450 0.940 0.545
Iron load ppb in cm® -20.994 -0.7859 -32.01 -28.164 -14.577 0.660 0.227 0.247 0.661
Regional iron load in ppb®
- Basal ganglia 0.011 0.009 0013 0.009 0.008 0442 0.042* 0439 0392
- Thalami -0.002 -0.002 -0.003 -0.001 -0.001 0.550 0.552 0552 0.989
- NAWM -0.007 -0.005 -0.009 -0.007 -0.012 0.031* 0.291 0414 0.787
- MS lesions -0.029 -0.004 -0.003 -0.041 0.004 <0001* 0225 0037 0249
— Periventricular -0.027 0.009 -0.010 -0.044 0.009 0.001* 0.301 0.004* 0.061
- Juxtacortical -0.033 -0.063 -0.012 -0.043 0.013 0.017% 0.576 0.945 0475
- Infratentorial -0.059 -0.070 -0.097 -0.016 -0.035 0419 0440 0.465 0.083
P, <0001*  0.025* 0.001* <0001*  <0.001*
Ps 0.070 0.147 0.032% 0417 0.169

cm? Cubic centimeter, HC Healthy controls, n Number, NAWM Normal-appearing white matter, P, Difference between patients and controls, P; Difference between
benign and aggressive MS, P, Difference between benign and drug naive patients, p; Difference between aggressive and naive patients, p, Differences between
iron load in all locations within the same group, ps Differences between iron load between MS lesions (or corresponding locations in healthy controls) within the

same group, ppb Parts per billion
*Mean

Pmedian

*Statistically significant
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Fig. 5 Regional iron concentrations in multiple sclerosis patients versus healthy controls

@ Iron concentration HC

concentrations in the periventricular lesions were in-
versely correlated with the patients’ age (p = 0.023), dis-
ease duration (p < 0.001), EDSS (p = 0.019), and T25FW
test (p = 0.001), and directly correlated with the
interferon-beta duration (p = 0.021).

Discussion

In this study, we aimed at assessing whether the iron de-
position in the MS brain is a problem of quantity or dis-
tribution. The main findings were that the global iron
load was not altered in MS compared to healthy con-
trols, and the global iron concentrations did not signifi-
cantly correlate with any of the clinical parameters. The
iron concentrations in MS lesions and NAWM were al-
tered considerably compared to controls, and the

regional iron concentrations correlated with several clin-
ical parameters, i.e., age, disease duration, EDSS, T25FW
test, and DMTs duration.

In the previous literature, the vast majority of the stud-
ies focused on iron evaluation in the deep grey matter of
MS patients, and a significant association between the
iron load in these regions and the disability progression
was reported [2, 9-12, 17, 18]. To the best of our know-
ledge, this is the first study to assess the global iron load
in MS, not only the regional iron concentrations, and to
study the correlation between the iron concentrations
inside the MS lesions with the clinical profile.

The global iron load in our MS cohort was not signifi-
cantly different from the global iron load in healthy con-
trols even after adjustment for the loss of volume

Table 3 Correlation between clinical profile and brain iron concentrations (global and regional) in MS patients

Global iron load

Regional iron load (n = 500 ROIs)

(Iron load per Basal ganglia

Thalami

NAWM MS periventricular lesions

cc2 brain

volume)
Age p > 005 p > 005 p > 005 p > 005 r=-0.163, p = 0.023*
Disease duration p > 0.05 p > 0.05 p > 0.05 r=-0323,p=0012* r=-0292, p<0001*
Number of relapses  p > 0.05 p > 0.05 p > 0.05 p > 0.05 p > 005
INF-B duration® p > 0.05 p > 0.05 p >0.05 p > 0.05 r=0.165, p = 0.021*
EDSS p > 0.05 r=0200,p =0029%* p>005 p > 0.05 r=-0.167,p=0019*
T25FW p > 0.05 p > 0.05 r=-0285p=0027% r=-0268p=0039" r=-0240p=0001*
SDMT p > 0.05 p > 0.05 p > 0.05 p > 0.05 p > 0.05

EDSS Expanded disability status scale, INF-8 Interferon beta therapy, MS Multiple sclerosis, n Number, NAWM Normal-appearing white matter, r Spearman
coefficient, ROIs Regions of interest, T25FW Timed 25-foot walking test, SDMT Symbol digit modality test

“Evaluated in the patients who received treatment only
*Statistically significant
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observed in MS patients. It seems that the noted aber-
rant iron deposition in MS is rather a problem of distri-
bution, not overall global load. Additionally, no
significant correlation was found between the global iron
concentrations and any of the studied clinical parame-
ters, which supports the idea that MS is not a disease of
iron overload or deficiency. These findings are interest-
ing as they might help explain why the previous thera-
peutic trials of chelation therapy and endovascular
interventions failed to show a beneficial effect [31, 32].
Given these findings, the hypotheses that aberrant iron
deposition in MS is due to altered iron influx or active
clearance/elimination from the brain should be down-
weighed [6, 19]. Iron deposition in MS is likely a conse-
quence of perturbed iron homeostasis, supported by the
evidence of polymorphism of the genes encoding iron
export from the cells, iron-binding, and iron transport in
MS patients [43, 44].

In agreement with the previous literature findings, the
regional iron concentrations in our MS cohort were differ-
ent from the healthy controls. The methodology of meas-
uring regional iron concentration in our study was
different from what has been performed previously. We
used fixed-size ROIs placed at selected areas rather than
segmentation techniques. This allowed us to measure and
compare the iron concentrations not only in the basal
ganglia and thalami but also in the MS lesions and
NAWM. In our cohort, the iron concentrations were high
in the basal ganglia and low in thalami but not signifi-
cantly different from the healthy control. The iron con-
centrations were significantly low in MS lesions and high
in the NAWM compared to corresponding locations in
healthy controls. High basal ganglia iron has been consist-
ently reported in MS in the literature [37, 45-47].

In contrast, reports on thalamic iron concentrations
were conflicting between the studies. Thalamic iron con-
centrations were reported to be lower [37], higher [48],
or not significantly different from the healthy controls
[49]. The iron load was reported to be reduced inside
the MS lesions in histological studies [14]. It was re-
ported to be shifted to the lesion periphery forming a
rim in slowly expanding chronic active lesions [50, 51].
In our study, the iron load in NAWM was higher than the
iron load in similar regions of healthy controls. In dis-
agreement with this finding, Hametner et al. [9] reported
low iron concentrations in their histopathological studies
of the NAWM of four MS brains compared to three con-
trol brains. Similarly, their second study of formalin-fixed
autopsies of 24 MS brains versus 18 controls revealed the
same results [52]. Their findings, however, were exclusive
to the NAWM around the MS lesions edges, which is not
the case in our study. Similar low iron concentrations
were reported in NAWM of MS patients in a cross-
sectional radiological study using R2* sequence for iron
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quantification [53]. The patients recruited in their study
had a longer disease duration (12.3 years versus 7.0 years
in ours) [53]. This might explain their difference from our
results, given the accumulating evidence that the iron
overload in different brain regions, even the basal ganglia,
is reduced over time [6, 33, 53].

Taken altogether, the aberrant iron deposition could be
concluded to be due to a process of shifting iron from cer-
tain regions to others inside the brain without affection of
the overall global brain iron load. In a recently proposed
explanation, iron was proposed to be reduced in brain re-
gions where progressive damage to iron-containing cells
(i.e., the oligodendrocytes and myelinated neurons) takes
place, such as the MS lesions and thalami (the relay of sev-
eral neurons where Wallerian degeneration is reflected)
[19, 54] and increased in brain regions where chronic
iron-rich microglia are activated such as the NAWM and
basal ganglia [6, 14]. There seems to be a piece of evidence
that the iron load is elevated in brain regions where
chronic microglial activation and ongoing oligodendrocyte
and myelin damage (the iron most rich structures in the
brain) with subsequent iron deposition [6, 14, 55]. Over
time, when the vast majority of myelin and oligodendro-
cytes are lost, the iron load is reduced [6, 19, 33]. This
might explain the noted correlation between the regional
iron concentrations and different clinical parameters in
our cohort.

The patients’ disability (evaluated by the EDSS or T25FW
test) was significantly correlated with high iron concentra-
tions in the basal ganglia and lower concentrations in the
thalami and MS lesions. Similarly, patients with aggressive
MS had higher basal ganglia iron than benign patients
reflecting more prominent pathology. This might also ex-
plain the differences in iron concentrations reported in the
literature in different brain regions, as the concentrations
largely depend on the disease duration [6, 19, 33, 49, 53]. In
our cohort, MS patients on interferon-beta therapy had
higher iron concentrations in MS lesions. The longer the
interferon therapy was used, the less iron loss was observed
in MS lesions. We propose that the interferon-beta therapy
received might have reduced myelin damage and subse-
quent iron loss. However, there is no data in the literature
that can substantiate such speculation; and the cross-
sectional design of the study does not allow confirmation
or negation of this explanation. Though we tried to adjust
for the impact of disease duration on iron concentrations
by selecting patients within a narrow range of disease dur-
ation (i.e., a range of 5 years), the duration was significantly
associated with iron concentrations in the MS lesions in
this relatively narrow range of years.

The main strength points of this study are that it is
the first one assessing the global brain iron load in MS,
to compare the iron concentrations inside the MS le-
sions as well as the deep grey matter and NAWM via
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fixed-sized ROIs to avoid brain volume issues and to
measure the iron concentrations in corresponding loca-
tions to MS lesions in healthy controls.

However, this study has limitations. First, a selection
bias could not be avoided to control for the confounding
effect of several well-established clinical variables on iron
concentration, such as the disease duration. Accordingly,
the results should be cautiously interpreted and should
not be generalised to patients outside the scope of the
inclusion criteria. This makes the generalizability of the
study results limited. Second, the ventricles and sulci
could not be excluded during the measurement of global
iron load. However, we do not expect the CSF iron to
affect the global iron load measurement due to its dy-
namic nature. Finally, measurement of iron concentra-
tions via fixed-sized ROIs in certain slices might be
inaccurate if the iron concentrations were not evenly
distributed inside the MS lesions, NAWM, or deep grey
matter.

In conclusion, our results showed that the aberrant
iron deposition in MS is likely a distribution problem ra-
ther than the overall iron load inside the brain. Iron glo-
bal concentrations are comparable between MS patients
and healthy controls, but the regional iron concentra-
tions are significantly different with areas showing low
iron concentrations (such as MS lesions and thalami)
and others showing high MS concentrations (such as
basal ganglia and NAWM).
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