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Abstract

Background: Screening for osteoporosis with contrast-enhanced computed tomography (CT) is promising for
identifying high-risk osteoporotic patients. Our aims were (1) to investigate the estimated volume bone mineral
density (vBMD) change over time after contrast injection (CT perfusion imaging, CTPI); and (2) to examine the
influence of contrast dose on vBMD.

Methods: Fifteen patients, aged 71 + 9 years (mean + standard deviation, range 55-86) underwent a CTPI
examination (28 scans within 63 s) of the upper body followed (after a waiting time of 10 min) by a full 4-phase CT
examination (4 scans within 4 min). The contrast dose for CTPI was 0.38-0.83 ml/kg, and for 4-phase CT was 0.87-
1.29 ml/kg. Vertebrae L1-L3 were analysed totalling 43 vertebrae, using Mindways qCT Pro.

Results: After contrast injection, vBMD showed a near-horizontal line until 17.5 s (non-contrast phase), followed by
a steep increase 17.5-41.5 s after contrast injection, i.e, in the arterial phase, which plateaued 41.5 s after, ie, in the
early venous phase. A higher contrast dose per kg yielded significantly higher vBMD increase in both the arterial
and venous phase (p < 0.003).

Conclusions: Both time from contrast administration and contrast dose per kg affected vBMD results. In arterial
phase, the steepness of the curve makes vBMD estimation unsure. However, as values plateaued in the venous
phase it might be possible to predict the correct vBMD values. Furthermore, contrast dose is a factor that needs to
be adjusted for when using such a formula.
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contrast-enhanced computed tomography scans
e Time from contrast administration affects the could be calculated from venous phase scans.
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especially in the arterial phase. Background
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market [7], osteoporosis is still heavily underdiagnosed
and undertreated [3, 8]. The reason for this is multifac-
torial including the risk of loss to follow-up regarding
osteoporosis after fractures have been treated in the
emergency setting. An organisational reason for this
might be the fact that that an additional examination,
i.e., dual-energy x-ray absorptiometry, must be obtained
before the decision of further handling of the patient re-
garding osteoporosis. This dual-energy x-ray absorpti-
ometry scan requires an extra visit for the patient, and
might in some settings (e.g, some organisations in
Sweden) include several months waiting times which
further increase the risk of losing patients, and delaying
treatment. Furthermore, there is often a lack of clarity
regarding who is clinically responsible for this patient
group, which was earlier referred by Harrington [9] as
the Bermuda Triangle in osteoporosis care which is
made up by the orthopaedist, primary care physician,
and the osteoporosis expert into which the fracture pa-
tient disappears.

Several national and international initiatives have been
initiated to ensure adequate evaluation and osteoporosis
treatment after fracture. These initiatives are built on
the fracture liaison services aiming to strengthen post-
fracture handling of patients [10-12].

One possible solution to facilitate osteoporosis hand-
ling might be the measurement of volume bone mineral
density (VBMD) from computed tomography (CT) ex-
aminations done for other indications than osteoporosis
assessment. This concept has been evaluated by several
groups [13-17]. Early studies used unenhanced scans
with a kVp of 120. In recent years, we have seen a de-
clining trend in the use of unenhanced scans in our de-
partment to save radiation dose. This includes the
emergency examinations of the abdomen which are in-
creasingly done after intravenous injection of contrast
agent only to better answer the wider clinical referral
questions, which especially in older patients often in-
cludes the suspicion of malignancy. Most of our malig-
nancy follow-up CT scans are done with contrast only
(when not contraindicated by impaired kidney function).
This led to the question if vBMD can be reliably ob-
tained from contrast-enhanced abdominal scans consid-
ering that, after intravenous injection of contrast agent,
the measured vBMD values generally increase in the ar-
terial phase and increase slightly further in the venous
phase [18-21].

While several groups reported that contrast-enhanced
abdominal CT examinations can be used for vBMD as-
sessment by linear conversion formulas [19, 20, 22-25]
or could be used to automatically screen patients for
osteoporosis [26], other groups report variable vBMD
values depending on scan delay times [27]. In addition,
most of the above-mentioned studies were single-centre
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studies with CT protocols using kVp values fixed at 120.
As an increasing number of contrast-enhanced abdom-
inal CT scans are made with lower kVps in order to save
radiation dose and contrast agents, screening methods
relying on software solutions using solely internal tissue
references might be problematic to use [28]. The reason
for this is that the Hounsfield Units (HU) units of differ-
ent tissues behave differently after contrast administra-
tion at varying kVp [29, 30].

Contrast concentrations, injection times, and speed, as
well as total contrast volume differed greatly between
studies. As described in the overview article by Bae [30],
intravenous contrast media behaviour depends on sev-
eral factors which substantially influence the HU values.
These factors include the different organ sites, iodine
concentration, injection duration, body weight, cardiac
output, injected volume, and injection rate.

CT perfusion imaging (CTPI) is a method based on
multiple CT scans during a short time (up to 1 scan/1.5
s), thus enabling to evaluate the organ timely character-
istics during contrast uptake. To our knowledge, no
study on vBMD analysis of CTPI data in comparison to
a simultaneously derived multiphase CT is yet available.

The aims of our study were (1) to investigate the
vBMD change over time after contrast injection (CTPI
examination); and (2) to examine the influence of con-
trast dose on vBMD values.

Methods

Ethics and study design

The study was approved by regional ethics committee of
the Faculty of Health Sciences, Linkoping University
(dnr. 2016-43/31 and dnr. 2019-05855). Informed con-
sent was obtained from all patients. Patients from the
consecutive hepatocellular carcinoma study [31] were in-
cluded for a retrospective analysis of CT scans. The CT
scans were performed between October 2016 to March
2019. All patients had hepatocellular carcinoma and
were planned for transarterial chemoembolisation treat-
ment. All patients first underwent a CTPI examination
of the upper body (28 scans in total), and, after a waiting
period of 10 min, a full 4-phase CT examination (four
scans in total) of the abdomen was performed (Fig. 1).
The HU units in the aorta and the portal vein were mea-
sured approximately in the height of vertebra L1. The
time curves of the aorta and portal vein were considered
as a reference for the contrast media behaviour in differ-
ent blood phases.

CTPI

CTPI examinations were undertaken on a Somatom Force
scanner (Siemens Healthcare, Forchheim, Germany). The
scanning parameters were as follows: tube voltage 70 kVp,
tube current of 150 mAs with a collimation of 48 x 1.2 or
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Fig. 1 Study protocol which included: (1) a computed tomography (CT) perfusion imaging examination (28 scans performed over 63 s); (2) a 10-min
break and finally; (3) a conventional 4-phase CT examination (four scans performed over 4 min). Contrast behaviour over time in three organs, i.e, aorta
(red), vertebra (green), and portal vein (blue) are schematically visualised. Black boxes on x-axis: time point of each CT scan. The HU in the aorta and
portal vein were measured approximately at the height of vertebra L1. The time curves of the aorta and portal vein are given as a reference for the

Contrast

4 CT scans during 4 minutes

192 x 0.6 mm. The total scanning time was 62.5 s, with
the first 20 scans made every 1.5 s, the following 5 scans
every 3 s, and the last 3 scans (venous phase) after a wait-
ing time of 6 s were undertaken every 3 s (Fig. 1). The first
CTPI scan was taken 7 s after contrast injection, leaving
the first scans with no contrast enhancement in vertebral
tissue. The anatomical scan length for the first 25 scans
was 22.4 cm including the upper border of the liver and
including L1-L3 in most patients. The anatomical scan
length for last three scans (venous phase) was 48 cm and
included the whole abdomen (from the diaphragm to the
symphysis). The scans were obtained with the patient
moving back-and-forth through the gantry in a “pendu-
lum” movement. Patients were instructed to take shallow
breaths during imaging. A fixed dose of 50 mL of iopro-
mide 370 mg I/kg (Ultravist™, Bayer Healthcare, Leverku-
sen, Germany) was injected at 6 mL/s followed by a flush
of physiologic (0.9%) saline (50 mL) at 6 mL/s with a dual-
head power injector (Ulrich Medical, Ulm, Germany) with
a maximum inflow time of 8 s. Compression to the upper
abdomen was not applied. The mean contrast to weight
ratio for the CT perfusion examination was 0.62 + 0.14
(mean * standard deviation), ranging from 0.38 to 0.83,
with a fixed amount of 50 mL of contrast agent applied.

Four-phase CT

The same CT scanner as for the CT perfusion protocol
was used to perform a 4-phase CT scan with a tube volt-
age of 120 kVp and a tube current of 130 mAs. The
examination included an unenhanced scan and three
contrast-enhanced phases, ie., arterial (30 + 2 s after
contrast-injection), venous (63 + 2 s after contrast-
injection), and late venous phase (4 min after contrast-

injection). Low-osmolarity nonionic contrast medium
iopromide 370 mg I/kg (Ultravist™, Bayer Healthcare, Le-
verkusen, Germany) was injected at a maximum volume
of 118 mL and injection rate of 5-6 mL/s. The contrast
dose per patient was calculated regarding our clinical
routine with a software program called OmniVis®, ver-
sion 5.1, GE Healthcare Sverige AB, Danderyd, Sweden).
The iodine dose per kilogram is set to 450 mg I/kg. The
mean contrast ratio for the 4-phase CT examination was
1.18 + 0.11 (mean * standard deviation, ranging from
0.86 to 1.29, with a mean contrast load of 97.7 mL and a
mean weight of 84 kg + 19.8, ranging from 60 to 130 kg.

Bone mineral density assessment

For the vBMD analysis, Mindways qCT PRO software,
version 2 (Mindways, Austin, TX, USA) was used as de-
scribed in detail earlier [28]. In brief, preceding the
study, calibration scans with Mindways dedicated phan-
tom were performed, repeated monthly during the
study period. After inclusion of patients, all scans were
exported from the clinical picture archiving and com-
munication system to a dedicated analysis computer.
For the CTPI, we used every second scan for the vBMD
analysis, resulting in a time resolution of 3 s for all time
points (16 scans in the first phases and 3 scans in the
later phase). The Mindways qCT PRO software uses
semi-automatically placed regions of interest (ROIs) in
the trabecular part of the lumbar vertebrae (middle
part), which, if needed, could be manually adjusted be-
fore the vBMD values were calculated. The ROIs were
made as large as possible, including as much trabecular
bone material as possible, but carefully avoiding cor-
tical, sclerotic, and cystic structures (Fig. 2). None of
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cystic structures

Fig. 2 Images of the region of interest (ROI) placement in the Mindways software where panels a, d, and g represent vertebra L1 in the axial,
sagital and coronal plane, respectively. Panels b, e, and h represent L2 in the 3 different planes while panels ¢, f, and i represent L3. The ROIls
were made as large as possible, including as much trabecular bone material as possible, but carefully avoiding vessels, cortical, sclerotic, and

the patients had bone metastases, vertebral fractures or
artefacts affecting bone analysis. The thickness of the
ROI was 9 mm and vertebrae L1-L3 were included in
the analysis, except for 2 patients in whom L3 was ana-
tomically outside the scan length of the CTPI examin-
ation. The measurements were performed by an
experienced osteoporosis physician (A.S.) with an over
15-year clinical experience. A vVBMD < 80 mg/cm® was

considered as osteoporotic, a VBMD of 80-119 cm® as
osteopenic, and a vBMD > 120 mg/cm® as normal re-
garding to the definition by the American College of
Radiology [32].

Radiation dose
The effective radiation dose was 20.9 mSv *+ 3.6 (mean +
standard deviation), ranging from 16.0 to 30.4 mSv for CTPI
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and 22.5 mSv + 7.9, ranging from 11.8 to 38.0 mSv for the 4-
phase CT.

Statistical analysis

SPSS Statistics (version 25.0, IBM Corp., Armonk, NY,
USA) was used for the statistical analysis. As data showed
normal distribution (tested with the Kolmogorov-Smirnov
test and the Shapiro-Wilks test), parametric ¢ test was
used. Data is reported as mean + standard deviation. For
correlation analysis, Pearson correlation was used. A p
value < 0.05 was considered significant.

Results

Descriptive

In total 43 vertebrae from 15 patients (11 males and 4
females) were included in the analysis. The age of pa-
tients was 71 + 9 years (mean + standard deviation), ran-
ging from 55 to 86 years. Thirty percent of the vertebrae
showed a vBMD < 80 mg/cm?®, 63% a vBMD of 80-119
cm® and 7% a vBMD > 120 mg/cm®. The mean weight
of the patients was 84 + 19.8 kg (mean + standard devi-
ation), ranging from 60 to 130 kg, and BMI was 27 + 6
kg/m?, ranging from 20 to 42. Regarding renal function,
mean creatinine was 80 + 15 pmol/L, ranging from 59 to
112 pmol/L and an estimated glomerular filtration rate
of 79 £ 20 mL/min, ranging from 43 to 123 mL/min.

CTPI

As shown in Fig. 2, vertebral vBMD showed a near-
horizontal line until 17.5 s after contrast injection (i.e.,
unenhanced phase in vertebrae), where after a steep in-
crease in estimated vBMD, a plateau after around 41.5 s
was seen. Compared to the first scan (unenhanced), the
estimated vBMD values were significantly higher at all
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time points after 17.5 s, ie, in arterial and venous
phases (Fig. 3). Volume BMD did not differ between two
neighboring time points in the early phase (up to 17.5 s)
and during venous phase (56.5-62.5 s). During the arter-
ial phase, each time point differed significantly from the
previous. There was no visual difference in the shape of
the curves between osteoporotic and non-osteoporotic
vertebrae (Fig. 4). Similarly, the two groups showed no
significant difference in any time point regarding vBMD
increase from first scan.

Four-phase CT

As shown in Fig. 3, the 4-phase CT showed a similar
pattern as CTPI, i.e., significantly elevated vBMD in ar-
terial (30 s) and venous phase (63 s) as compared to
unenhanced scan.

The absolute vBMD change (delta) from non-contrast
to arterial and venous phase, respectively, did not differ
between osteoporotic and non-osteoporotic vertebrae
(vBMD increase to arterial phase 14 + 5 mg/cm® (osteo-
porotic) versus 15 + 6 mg/cm® (non-osteoporotic), p =
0.645 and venous phase 16 + 4 mg/cm® (osteoporotic)
versus 16 + 7 mg/cm3 (non-osteoporotic), p = 0.974).

Contrast load

A higher contrast dose/kg correlated to a higher vBMD
both in arterial phase (r = 0.39, p = 0.001) and venous
phase (r = 0.38, p = 0.001). As shown in Table 1, there
were significantly higher vBMD increases in the 4-phase
CT than corresponding time points in CTPI both re-
garding the arterial and venous phases. As described in
the “Methods” section, 4-phase CT had nearly double
the concentration of contrast/bodyweight than CTPI,
ie, 118 + 0.11 versus 0.62 + 0.14.
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(CT) perfusion imaging over time as well as vBMD values from osteoporotic (stars) and non-osteoporotic (triangles) vertebrae in 4-phase CT over time.

Mathematical description of the vBMD curve

In Fig. 5, the CTPI graph (normalised vBMD values
against 7 s) is divided in three main areas (non-contrast
[grey], arterial [red], and venous [blue] contrast phase).
The linear trend lines of the different areas show a steep
increase during the arterial phase. In this section, all
vBMD values differed significantly regarding vBMD in
comparison to the previous time point. The non-
contrast and venous phases show near horizontal lines
and no difference between nearby scan.

Discussion

We show that vBMD differs considerably within short
timespans during the arterial phase, making potential
correction formulas vulnerable as a short time shift in
the CT protocol could cause significant overestimation
or underestimation of the vBMD. In venous phase,
vBMD behaviour is more stable, thus possibly enabling
the use of correction formulas. Furthermore, the amount
of given contrast agent (keeping the injection speed at
the same rate) significantly affected the estimated vBMD
at the corresponding time points. There was no differ-
ence in contrast uptake behaviour between osteoporotic
and non-osteoporotic vertebrae. Thus, an estimated
unenhanced vBMD value might be calculated from
contrast-enhanced scans after the contrast has reached

Table 1 Change in vBMD after contrast administration

CT perfusion 4-phase CT p value (paired)
vBMD increase®
ARTERIAL 100+ 6.2 149+ 57 0.001
VENOUS 120 + 5.1 16.1 + 6.6 0.002

Increase compared to non-contrast phase. ARTERIAL = 30 s and VENOUS = 63
s post-contrast injection

the time point about 41.5 s but with the caveat of taking
the given amount of contrast and the contrast to weight
ratio into consideration.

Osteoporotic screening based on CT scans [13, 15,
16, 22, 23, 25, 33-35] is of increasing interest as it
might increase the number of osteoporotic patients be-
ing diagnosed and treated correctly as well as reducing
the need of an additional examination for the patient.
Early treatment of this group is important as the risk of
new fractures is high shortly after a previous imminent
fracture [6]. The screening approach was initially made
by evaluating unenhanced abdominal CT scans for
vBMD with a fixed kVp of 120 [15]. However, as an in-
creasing number of abdominal CT scans are exclusively
made after the administration of intravenous contrast
agent in order to decrease radiation dose, several re-
search groups have suggested to measure vBMD in the
obtained contrast scans and correct the values by ap-
plying linear conversion functions [13, 15, 16, 22, 23,
25, 33-35]. However, our data, which is in line with the
report by Acu et al. [27], indicate that the vertebral
contrast load shows a nonlinear vBMD change over
time, so that simple conversion formulas might not be
applicable specifically in arterial phase scans [36]. The
arterial phase is specifically important as the timing of
contrast phases differs significantly between institutions
and protocols. Our study shows that the vBMD values
enter a plateau phase after 41.5 s reaching over the
whole venous phase. This is in concordance with earlier
studies [37] and it seems reasonable that a transform-
ation formula might be described for these time points.
The mathematical description given in Fig. 5 suggests
that linear trendlines might be calculated for different
contrast phases. These trendlines show that a small
time-difference in the arterial phase (17.5-41.5 s)
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leading to significant differences in the vBMD estima-
tion. Therefore, the use of such mathematical estima-
tion trendlines should be avoided. However, in the
venous phase (41.5-65 s), the trendline is more hori-
zontal, leading to comparable vBMD values over time
and therefore might be used to estimate vBMD values
from venous scans.

As differences in the amount of given contrast and by
that the contrast to weight ratio showed significant dif-
ferences in the resulting vBMD values at every time
point, it is important to also consider the contrast to
weight ratio when calculating vBMD values. As the cal-
culation of the vBMD values is based on the density
measurement in HU, this finding is expected and in con-
cordance to a study on contrast media behaviour in CT
scans from Bae [30]. As shown by Roski et al. [24], the
variability of contrast load and timing variances in the
arterial phase might eventually be overcome by measur-
ing the individual vessel iodine concentrations and by
that adjusting the vBMD value.

Another important aspect when considering vBMD
measurement is to be aware of the kVp used in the CT
examination. A lower kVp yields exponentially higher
HU values [29, 30], and furthermore impact of kVp var-
ies between different tissues [28, 29]. For this reason,
vBMD analysis with software methods based on internal
tissue references, i.e., no calibration phantom, might be
problematic to use for kVp values other than 120.
Phantom-calibrated software seems more plausible to
use, but it is essential to have a calibration protocol for
different kVp values. This limitation might be overcome
by using dual-energy or photon-counting CT examina-
tions, as the information from two different energies en-
ables the calculation of vBMD without the need of fixed
kVp values [38, 39].

Our study has several limitations. The sample size is
small and the design is retrospective. As the study design
was unique in the sense that both a CTPI and a 4-phase
CT examination were performed under the same patient
visit, the study size was limited by the ethics committee
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from the beginning. The study population was not a typ-
ical osteoporotic cohort in fracture liaison services, but
do reflect and cover the range from osteoporotic to non-
osteoporotic bone. However, as the primary outcome
was not to describe the detection of osteoporotic pa-
tients, but to study the vBMD behaviour over time after
contrast administration, the choice of study population
seems to be adequate. Another limitation is the limited
waiting time (10 min) between the CTPI examination
and the 4-phase CT, resulting in remaining contrast
agent in the scans of the 4-phase CT. To adjust for this,
no statistical analysis was performed between the real
vBMD values, but on their difference of vBMD over
time. The ROIs were placed manually, which contributes
to the risk of a higher intraobserver and interobserver
variability. Finally, we did not correct for body weight in
the study which might have impact on vBMD measure-
ments in underweight or obese patients.

In conclusion, both time from contrast administration
and contrast dose per kg affected vBMD results. In ar-
terial phase, the steepness of the curve makes vBMD es-
timation unsure and questionable. However, as values
plateaued after 41.5 s (early venous phase), it might be
possible to predict the correct vBMD values from linear
conversion formulas after that time point. This, however,
requires the use of kVp calibrated analysis systems and
measurements should be done with a constant contrast
to weight ratio.
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CT: Computed tomography; HU: Hounsfield units; ROI: Region of interest;
vBMD: Volume bone mineral density
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