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Abstract

Background: Automatically detecting and quantifying pneumothorax on chest computed tomography (CT) may
impact clinical decision-making. Machine learning methods published so far struggle with the heterogeneity of
technical parameters and the presence of additional pathologies, highlighting the importance of stable algorithms.

Methods: A deep residual UNet was developed and evaluated for automated, volume-level pneumothorax grading
(ie, labelling a volume whether a pneumothorax was present or not), and pixel-level classification (i.e, segmentation
and quantification of pneumothorax), on a retrospective series of routine chest CT data. Ground truth annotations
were provided by radiologists. The fully automated pixel-level pneumothorax segmentation method was trained
using 43 chest CT scans and evaluated on 9 chest CT scans with pixel-level annotation basis and 567 chest CT
scans on a volume-level basis.

Results: This method achieved a receiver operating characteristic area under the curve (AUC) of 0.98, an average
precision of 0.97, and a Dice similarity coefficient (DSC) of 0.94. This segmentation performance resulted to be
similar to the inter-rater segmentation accuracy of two radiologists, who achieved a DSC of 0.92. The comparison of
manual and automated pneumothorax quantification yielded a Pearson correlation coefficient of 0.996. The
volume-level pneumothorax grading accuracy was evaluated on 567 chest CT scans and yielded an AUC of 0.98
and an average precision of 0.95.

Conclusions: We proposed a deep learning method for the detection and quantification of pneumothorax in
heterogeneous routine clinical data that may facilitate the automated triage of urgent examinations and enable
treatment decision support.
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Key points e Additional automated quantification of
pneumothorax volume correlates well with manual
e Pneumothorax is an important pathology to be volumetric assessment, but is less time-consuming.
included in applications that are designed to triage
urgent imaging examinations. Background
o Heterogeneity in routine clinical data may be Automated triage of patients in radiology is a rapidly devel-
overcome by utilising deep learning methods. oping machine learning application with the goal of early
detection of urgent pathologies [1, 2]. One such pathology
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Furthermore, for spontaneous, traumatic, and iatrogenic
pneumothoraxes, there are different and specific treatment
suggestions, all of which depend on a multitude of factors
[3]. Whereas some pneumothoraxes may be treated con-
ventionally (i.e., by observation), others will need to be aspi-
rated with a needle or require the placing of a chest tube to
relieve the pressure, the latter being frequently conducted
in trauma patients [3]. Therefore, for radiological triaging
systems that aim to provide a thorough evaluation of a
patient's condition, it will be necessary to include pneumo-
thorax and report on its therapy-relevant features.

Next to clinical symptoms, the treatment decision can be
partially supported by the pneumothorax extent or volume
as measured on chest radiographs or computed tomog-
raphy (CT) scans [4—6]. When the cause is spontaneous, a
‘large’ pneumothorax is defined as larger than 3 cm or than
15% of the volume of the hemithorax and requires aspir-
ation [7]. Although in trauma patients, chest tubes are fre-
quently placed, recent publications have shown increasing
evidence that supports the conservative treatment of trau-
matic pneumothoraxes [8], with one study suggesting con-
servative treatment for pneumothoraxes after blunt trauma
with a volume lower than 30 mL [5]. Thus, there is an on-
going debate about what the appropriate management
should encompass as the relevant volume or threshold of
free air that mandates the placing of a chest tube has not
been exactly defined, as yet.

To estimate the size of a pneumothorax, different modal-
ities can be used, such as chest radiography and ultrasound,
with CT scans constituting the standard of reference [3].
While a rough estimate can be quickly done by measuring
the distance between the pleural leaflets perpendicular to
the lung surface and thoracic wall, the quantification of the
volume requires more sophisticated approaches. The man-
ual segmentation of a pneumothorax is not feasible in the
clinical routine and is too time-consuming for a large num-
ber of cases, thus necessitating automation [9].

Some publications have shown the possibility of automat-
ically quantifying the volume of pneumothorax, in both
adults [9, 10] and paediatric patients [11]. These studies
have used specific functions in a multistep approach to
achieve the final volume estimate. However, such algo-
rithms may be prone to bias through concurrent patholo-
gies [12]; consequently, scans with these pathologies were
excluded in one of these studies [9]. In these studies,
pneumothorax quantification on chest CT was performed
using different methods, obtaining a sensitivity of 100%;
however, specificity ranged from 10 to 100%, with low
values in the cases of small pneumothorax or concurrent
pathologies such as emphysema and bullae [10, 13].

The recent advances of machine learning applications
in radiology have resulted in several publications about
the automatic detection of pneumothorax in large-scale,
clinical, and routine chest x-ray datasets. By applying
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deep-learning methods, it was possible to overcome the
heterogeneity of technical parameters and the variability
due to concurrent pathologies that would otherwise
hamper accurate detection [14, 15].

For CT scans, previous studies have relied on the com-
bination of specific functions and machine-learning steps
to segment the lungs in the presence of pneumothorax
and other pulmonary pathologies [12]. However, there
are no publications that have used deep-learning exclu-
sively for pneumothorax detection and quantification on
chest CT scans. Therefore, the goal of this study was to
develop and evaluate the performance of a deep learning
algorithm to triage emergency and routine chest CT
scans with heterogeneous pathologies and acquisition
parameters based on pneumothorax presence and size.
This may enable urgent cases to be put at the top of the
worklist and to aid treatment decisions.

Methods

The local ethics committee of the Medical University of
Vienna approved the retrospective analysis of the imaging
data for the study (approval number 1154/2014). Here, we
present a pneumothorax classifier that can detect a pneumo-
thorax at the pixel level. In addition, we use the same classi-
fier for the volume-level pneumothorax-grading task. More
specifically, for volume-level pneumothorax grading, we did
not train a separate model but used the pixel-level classifica-
tion results by simply aggregating the pixel-level predictions
to derive a volume-level score. In Fig. 1, we show an illustra-
tion of the proposed automated method.

Imaging data

We collected all chest CT scans from the clinical routine
over a timeframe of 2.5 years from 2013 to 2015 and gener-
ated labels for ‘pneumothorax’ and ‘no pneumothorax’
based on the radiological reports and visual verification by
a radiologist with three years of subspecialty training in
thoracic radiology. In total, chest CT scans of 610 unique
patients were included, were included, from which 43 were
randomly chosen for pixel-level segmentation and 567 were
randomly chosen for volume-level grading. Patient age
ranged from 1 to 92 years, with a mean age of 54 years
(standard deviation 19 years), 384 males (63% ) and 226 fe-
males (37%). All images were acquired on one of the three
following scanners: Somatom Cardiac Sensation 64 (Sie-
mens Medical Solutions, Forchheim, Germany); Somatom
Definition Flash (Siemens Medical Solutions, Forchheim,
Germany); or Brilliance CT 64 (Philips Medical Systems,
Cleveland, OH, USA).

There were no exclusion criteria, resulting in a wide
variety of pathologies. The most common main pulmon-
ary diagnoses were post-surgical complications (48/610,
7.9%), malignant neoplasm of unspecified part of the
bronchus or lung (37/610, 6.0%), chronic obstructive



Rohrich et al. European Radiology Experimental (2020) 4:26 Page 3 of 11
p

vl | «» %) %) %) “© © % 73 % % % © %) %) %) n

ol|lg||e||e|le||l el e ||l2||le|l2|l2|le

El|E||EI|E(IEl €| € = g = = s EMNEMENENEINE

G| @ @ © @ © © o = o o & o © @ © S ||a

S|[S[[5||S||[S||S|[S|[S|[S||S|S|s|ls|ls5|l5]|l5]5]5

el (s3] 3|88 8| & BR[| ]|s]||a]][s]

Encoder Decoder

an encoder-decoder architecture

Fig. 1 Neural network architecture. The proposed automated pneumothorax classification model is based on a UNet architecture that comprises

pulmonary disease (31/610, 5.0%), secondary malignant
neoplasm of the lung (29/610, 4.8%), pneumonia (25/610,
4%), acute respiratory failure (24/610, (3.9%) and lung
transplantation (23/610, 3.8%), with other pulmonary
diagnoses occurring in less than 1% of cases.

Pixel-level classification

For training and evaluation of the pixel-level classifica-
tion model, we randomly selected 43 chest CT scans
with a pneumothorax from the clinical routine CT scans.
Only axial slices in the inspiratory phase that were re-
constructed using lung kernels were included. Technical
specifications are provided in Table 1.

A radiologist with 5 years of experience in thoracic CT
provided pixel-level manual annotations of pneumothorax
regions for single, axial slices using ITK-SNAP [16]. Axial
slices were selected to represent a good coverage of the
relevant occurrences of pneumothorax. The manual gener-
ation of annotations is very time-consuming and not prac-
tical for every slice of a CT scan when working on more
than a few scans. Our solution was to annotate one slice
every fifth to tenth slice and to automatically interpolate
intermediate slices. In addition, the first (cranial) and last
(caudal) slice (z-position) of each pneumothorax per vol-
ume was labelled with a specific label and interpolations
were restricted to those slice ranges. For the interpolation
(i.e, approximation of the missing annotations) of each in-
terposed slice, the x/y in-plane positions of boundary pixels

Table 1 Technical specifications for the pixel- and volume-level
cases

Pixel-level cases Volume-level cases

Slice thickness 1,153 1,152, 3

(mm)

Pixel spacing 051 x 051 to 0.84 0.35 x 035 to 0.97

(mm) X 0.84 X 097

Tube voltage (kvV) 100, 120 80, 100, 120, 140

Exposure (mAs) 10 to 284 30 to 382

Filter type WEDGE_2, WEDGE_3, FLAT, WEDGE_2, WEDGE_3,
YB, no filter YB, D, no filter

Convolution B60f, B70f, YB B60f, B60s, B70f, 170A\2, 170\3,

kernel YB, D

were linearly interpolated along the z-axis. All pixels that
were located on the resulting boundary and within the
boundary were automatically annotated with the pneumo-
thorax label. These additional labels were used only for
model training but were not used as ground-truth labels for
model evaluation.

In total, we had 2487 annotated axial slices with, on
average, 57 annotated slices per scan, whereas, on average,
1.86% of all pixels of an image were assigned the ‘pneumo-
thorax’ class label. We applied a statistical model that han-
dles distinct class imbalances. Figure 2 provides an
overview of the data statistics of the annotated data.

Volume-level grading

Volume-level pneumothorax grading was performed using
the pixel-level pneumothorax classifier. Therefore, for
volume-level grading, we did not require additional train-
ing data. For only the final evaluation of the volume-level
pneumothorax detection accuracy, we randomly selected
567 chest CT scans, in which the occurrence of pneumo-
thorax was labelled at the volume-level. There were 167
(29%) volumes that contained and 400 (71%) volumes that
did not contain a pneumothorax (see Table 1).

For both the pixel- and volume-level classifications, only
unique patients were selected. For data pre-processing, we
applied a lung window with a grey value range of [- 1000,
400] and mapped this grey value representation to the
range [0, 1].

Automated classification method

The algorithm classifies every pixel position within two-
dimensional axial images extracted from chest CT vol-
umes for the differentiation between pneumothorax and
background regions. We applied semantic segmentation
[17], a state-of-the-art, machine-learning method that
utilises deep neural networks (known as deep learning),
to compute pixel-level classification maps from clinical
chest CT scans. To build this automated model, super-
vised learning on annotated training data, comprising
clinical chest CT scans and corresponding pixel-level an-
notations of pneumothorax, was utilised.
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The semantic segmentation technique is based on a
neural network architecture that comprises two compo-
nents: an encoder network and a decoder network. The
encoder maps input images to a meaningful, low-
dimensional, abstract representation, which can be inter-
preted as a compression of the original signal (image) that
retains the most relevant and informative signal compo-
nents. The subsequent decoder network maps this com-
pact representation to a map of class labels so that each
pixel of the input image has a corresponding class label
prediction. Both the parameters of the decoder network,
which yields an accurate mapping of the low-dimensional,
abstract representation of class labels, and the parameters
of the encoder network, which yields the most informative
inputs for the decoder, are automatically learned by the
learning algorithm during training, based solely on pairs
of input images and corresponding target labels. Both
neural network components are trained simultaneously.
Specifically, we implemented a UNet-based image seg-
mentation network [17] and used residual units [18] as
feature extractors. An overview of the utilised UNet archi-
tecture is shown in Fig. 1.

The model was trained for 3500 epochs (i.e, full passes
through all training volumes) using a cross-entropy ob-
jective. The model was trained and evaluated on a
TitanX graphics processing unit (Nvidia, Santa Clara,
CA, USA) with Python 2.7 and Tensorflow [19] (version
1.3), and with the deep learning toolkit (DLTK [20]) for
medical imaging.

Experimental setup

For model training and evaluation, we split the data into
a training set (27 volumes), a validation set (7 volumes),
and a test set (9 volumes). Model training was per-
formed on the training set. Hyper-parameter tuning and
model selection was performed on the validation set.

The test set was only used once, namely, for the final
evaluation of the actual model accuracy.

Execution time

For all volumes of the test set, we measured the execution
time of processing all raw pixel values of a full CT scan to
pixel-level classifications of the full volumes as belonging
or not to pneumothorax. The execution time per CT scan
is the time that our algorithm takes for transforming a full
raw volume into a volume of pixel-level classifications.
We report average, minimum, and maximum execution
times over all volumes of the test set.

Statistical analysis

We evaluated the performance of the model for pixel-
level classification accuracy, volume-level grading accur-
acy, and interrater variability.

Pixel-level classification accuracy

We evaluated the pixel-level segmentation accuracy, ie.,
the accuracy of correctly classifying individual pixels as be-
longing or not belonging to pneumothorax, of the trained
classifier on the test set, which comprises only chest CT
scans that were not used during model training. We
parsed each full volume of the test set and computed the
Dice coefficient score (DSC), which is defined as

2 - precision - recall 2-t"

DSC = =
precision + recall 2ttt + fT 4 f~

where t'is the number of true positive pixels, f'is the
number of false-positive pixels, and f is the number of
false-negative pixels. In addition, we computed precision,
recall, and specificity values. Furthermore, we plotted the
receiver operating characteristic (ROC) and precision-recall
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curves and provide the corresponding area under the curve
(AUC) and average precision values.

The quantification of the total area of a pneumothorax
within an axial slice of a chest CT scan was computed
based on the corresponding pixel-level pneumothorax
segmentations. We evaluated the pneumothorax quanti-
fication accuracy by aggregating the segmented pneumo-
thorax pixels. Pneumothorax areas are approximated as
the number of pixels classified (or annotated) as a
pneumothorax per axial slice. We plotted correlation
plots and calculated Pearson correlation coefficient, R?,
and the corresponding two-tailed p value.

Volume-level grading accuracy

We evaluated the volume-level pneumothorax detection ac-
curacy, ie, the accuracy of correctly classifying a whole
chest CT scan as having or not having a pneumothorax, on
chest CT scans with volume-level pneumothorax grading.
We computed DSC, precision, recall, and specificity values.
Furthermore, we plotted ROC and precision-recall curves
and provide corresponding AUC and average precision
values. Pixel-level classification results were used for
volume-level pneumothorax grading. More specifically,
pixel-level pneumothorax class probabilities were used to
perform volume-level pneumothorax grading. To evaluate
the volume-level pneumothorax grading accuracy, we
parsed each full volume and assigned those pixels the
pneumothorax label that exceeded the threshold (in terms
of output probability), which corresponded to the value at
the Youden Index or optimal cut-off point of the corre-
sponding AUC or precision-recall curve.

Interrater variability

In total, 86 axial slices from two chest CT scans were in-
dependently annotated by two radiologists with 4 and 5
years of experience with thoracic CT. Based on this data,
the interrater variability between two independent anno-
tators was evaluated to approximate the maximal achiev-
able segmentation accuracy. The consensus of both
radiologists with regard to pneumothorax identification
on the pixel level was evaluated based on the DSC and
based on the correlation of the slice-wise pneumothorax
quantification.

Results

Pixel-level classification

Segmentation accuracy

Figure 3 shows ROC and precision-recall curves based on
pixel-level pneumothorax predictions and corresponding
ground-truth annotations. Table 2 provides sensitivity and
specificity values evaluated at the Youden Index [21],
which is an optimal cut-off point on the ROC curve that
simultaneously maximises sensitivity and specificity.
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Table 2 provides clinical measures, which were calcu-
lated based on the precision-recall curve.

Qualitative segmentation results are shown in Figs. 4
and 5. False-negative cases were observed only in very
small pneumothoraxes, in small and thin regions of free
air next to chest tubes. False-positive cases were mainly
due to panlobular or chest-wall emphysema, bullae, and,
in one case, due to misclassification of air inside the
main bronchus.

Figure 6 shows correlation plots of slice-wise seg-
mented versus annotated pneumothorax areas, which
evaluated the pneumothorax area estimation accuracy.
Calculation of the Pearson correlation coefficient (0.99),
R* (0.99), and the corresponding two-tailed p value
(< 0.001) suggested a high linear correlation between
predicted and manually delineated pneumothorax areas,
with better results for larger pneumothoraxes than for
smaller ones. In addition, for each individual pneumo-
thorax occurrence, we evaluated the relative residual, ie.,
the absolute difference between predicted and manually
delineated pneumothorax area divided by the pneumo-
thorax area. On the test set, the proposed method gave a
mean relative residual of 0.14 with a variance of 0.12.

Interrater variability evaluation

Table 2 provides precision, sensitivity, specificity, and
the DCS, which measured the consensus between two
independent annotators in pixel-level pneumothorax
identification. Figure 7 shows correlation plots of slice-
wise accumulated pneumothorax areas based on pixel-
level pneumothorax annotations, independently per-
formed by two radiologists, which evaluate the interrater
variability of pneumothorax area quantification. Calcula-
tion of the Pearsons correlation coefficient (0.99) and
the corresponding two-tailed p value (< 0.001) suggested
a high linear correlation between predicted and manu-
ally delineated pneumothorax areas. These values are
comparable to the quantification results obtained by the
proposed automated model.

Volume-level grading accuracy

Figure 8 shows ROC and precision-recall curves based
on volume-level pneumothorax predictions and corre-
sponding ground-truth labels. Table 2 provides sensitiv-
ity and specificity values evaluated at the Youden Index.
Table 2 provides clinical measures, which were calcu-
lated based on the precision-recall curve.

Execution time

The execution times depend on the number of slices of
the CT scans. The computations on volumes of the test
set took on average approximately 58 s per volume
(minimum 17 s, maximum 80 s).
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Discussion

In this work, we propose and evaluate a method for the
accurate classification and quantification of pneumo-
thorax using a deep learning algorithm in a large set of
heterogeneous routine chest CT scans that may be uti-
lised in the clinical routine for automated triage of pa-
tients. By including scans with pneumothorax that also
had additional pathologies from across several CT ven-
dors with a wide variety of technical parameters, we
evaluated the algorithm in a more realistic situation than
other studies that excluded scans when the pneumo-
thorax was not the only pathology [9]. While previous
studies have suggested the use of specific reconstruction
parameters to achieve the best results for their compu-
terised pneumothorax volume quantification [11], there
is still a large variability regarding the technical setup of

chest CT scans in the clinical routine, necessitating the
development of flexible and robust solutions.

Our application provides several advantages. Radiolo-
gists routinely quantify pneumothorax by measuring the
anteroposterior diameter at a representative ventral loca-
tion, similar to measuring a pneumothorax in chest x-
ray radiography [22]. Still, there is a wide variance about
what size pneumothorax should be considered small or
large. For different modalities, guidelines for the man-
agement of pneumothorax report different thresholds,
ranging from 15 to 49% of lung volume [23]. Some au-
thors have suggested a size of 15% of the lung volume as
a threshold by which to decide between surgical and
conservative treatment, as the recurrence of smaller
pneumothoraxes treated conservatively was lower than
that of those treated with a chest tube, while the time

Table 2 Accuracies for the segmentation of a pneumothorax at the pixel level, detection of a pneumothorax at the volume level,
and between radiologists, is displayed in terms of sensitivity, specificity calculated at the Youden index of the receiver operating
characteristic curve and corresponding area under curve as well as precision, recall, and Dice similarity coefficient calculated at the
optimal cut-off point of the precision-recall curve, and corresponding average precision

Accuracy results

Pixel-level segmentation

Inter-rater segmentation Volume-level detection

Sensitivity 0.958
Specificity 0.994
Area under the curve 0979
Precision 0.961
Recall 0919
Dice similarity coefficient 0939
Average precision 0.966
Number 9

0.904 0916
0.999 0.930
- 0.976
0.944 0.886
0.904 0.880
0.924 0.883
- 0.954

2 567
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Fig. 4 Segmentation results. Raw images and corresponding segmentation results. False-negatives (red), false-positive pneumothorax predictions
(green), and correct pneumothorax predictions (yellow) The areas of false prediction are very subtle and correspond to a few pixels on the edges
of the correct yellow predictions. In the next Figure (Fig. 5), in contrast, the areas of false prediction are shown more prominently

needed for full recovery increased steeply when the
pneumothorax was larger than 15 %[24, 25]. Another
more recent study suggested 30 mL as a cut-off [5]:
whereas smaller ones (< 30 mL) may be treated conser-
vatively, those larger than 30 mL mandate the placement
of a chest tube [5].

Measuring pneumothorax size on a chest x-ray is fast,
but may be inaccurate compared to the volume estimation
on a CT scan [21]. Manual volume assessment on CT
scans, however, is very time-consuming and not feasible
in clinical practice, necessitating the automation. More-
over, the automatic segmentation and quantification of
the thoracic cavity and the pneumothorax would allow the
calculation of different measures (i.e, absolute pneumo-
thorax volume versus relative volume compared to the size

of the thorax or the ipsilateral lung) to determine the
measurement with the best predictive performance.

Further, we compared the segmentations of two radi-
ologists in 86 slices to evaluate the reliability of manual
segmentations. Taken together, the algorithmic segmen-
tations were able to outperform human segmentations
in terms of reliability, indicating that an automatic seg-
mentation would lead to a more consistent, and, thus,
more reproducible quantification of free pleural air vol-
ume. In this manner, by adding information about the
estimated volume of a pneumothorax to the patient’s
symptoms and clinical state, the confidence with a thera-
peutic decision may be improved.

We identified several articles that have reported on
problems similar to that of the present study. Cai et al.
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Fig. 5 Failure cases of segmentation results. Raw images and corresponding segmentation results. False-negatives (red), false-positive
pneumothorax predictions (green), and correct pneumothorax predictions (yellow)

[10, 11] published specifically tailored models to auto-
matically quantify pneumothorax volume on CT scans
of trauma patients and children. They achieved perfect
sensitivity by detecting 100% of all cases with a pneumo-
thorax; however, specificity ranged from 10 to 100% in
the first study [10]. The second study [11] reported a
specificity of 91%. Similar results were reported by a re-
cent study [13], with an overall accuracy of 97%, a sensi-
tivity of 100%, and a specificity of 83%. A high sensitivity
is important for detecting all cases of a relevant condi-
tion to avoid detrimental consequences. A high specifi-
city, however, is important to avoid radiological follow-
up on too many false-positive cases, and, therefore, draw
attention from more important findings. Results from
the test set suggest that our proposed deep learning
method is able to segment a pneumothorax in chest CT
scans with high accuracy. In our study, we achieved an
AUC of 97.6%, with a sensitivity of 91.6% and a specifi-
city of 93%. False-negative cases can be attributed to
very small and thin regions of free air inside the pleural
cavity, whereas false-positive cases were mainly due to
panlobular or chest-wall emphysema, similar to what the
other studies reported.

Another use for the fully automatic detection and quan-
tification of pneumothorax is reflected by the recent ad-
vances in the field of ultra-low-dose chest CT scans,
which may provide additional information compared to
conventional chest x-ray radiography [26]. Due to the lim-
itations of other modalities in estimating pneumothorax
volume, an ultra-low-dose chest CT scan would constitute
an ideal way to provide follow-up on a pneumothorax. A
widespread clinical implementation would lead to a large
increase in CT scans, necessitating the triage and

automatic quantification to support the radiologists’ work-
flow, especially in an emergency department situation.

With regard to execution time for one case, our pro-
posed method (on average, 53 s) was comparable to
other studies (average of 51 s [9]) or faster (average of
3.1 min [10] and 4 min [11]).

We recognise several limitations of our study. The au-
tomated model was trained on interpolated annotations,
which led to some smaller variations, such as the fit of
the interpolated segmentations resembling the manual
annotations, as determined by visual validation. A sec-
ond limitation is the lower prediction accuracy of
smaller pneumothorax volumes (< 27 mL, as estimated
by summarising the voxels that were classified as a
pneumothorax by the algorithm, see Fig. 6). In these
cases, the predicted volume ranged below the manually
segmented volume, possibly due to a relatively higher
over-segmentation by human readers. However, because
the cut-off of 30 mL was used as a guide for the decision
between conservative or surgical treatment [5] and both
the manual and predicted volume remained below the
threshold of 30 mL, there would be no change of ther-
apy based on this discrepancy of volume estimation. A
selection bias could be due to the single-centre study de-
sign. Our hospital focuses on thoracic surgery and lung
transplantation, reflected by the pulmonary primary
diagnoses of ‘post-surgical complications’ and ‘lung
transplantation’. At other institutions, there might be a
different distribution of diagnoses and pathologies, thus
leading to a difference in algorithm performance.

In summary, we demonstrated the applicability of a
deep learning algorithm for pneumothorax detection
and quantification in a large and very heterogeneous
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cohort of patients from the clinical routine with a wide
variety of pathologies. The algorithm-based estimation
of pneumothorax size may be used for triage of urgent
examinations, to guide clinical decision-making, or to
automatically sort and label large amounts of CT scans
based on the presence and volume of a pneumothorax
for further processing.
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