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Abstract

Background: Differentiate malignant from benign enhancing foci on breast magnetic resonance imaging (MRI)
through radiomic signature.

Methods: Forty-five enhancing foci in 45 patients were included in this retrospective study, with needle biopsy or
imaging follow-up serving as a reference standard. There were 12 malignant and 33 benign lesions. Eight benign
lesions confirmed by over 5-year negative follow-up and 15 malignant histopathologically confirmed lesions were
added to the dataset to provide reference cases to the machine learning analysis. All MRI examinations were
performed with a 1.5-T scanner. One three-dimensional T1-weighted unenhanced sequence was acquired, followed
by four dynamic sequences after intravenous injection of 0.1 mmol/kg of gadobenate dimeglumine. Enhancing foci
were segmented by an expert breast radiologist, over 200 radiomic features were extracted, and an evolutionary
machine learning method (“training with input selection and testing”) was applied. For each classifier, sensitivity,
specificity and accuracy were calculated as point estimates and 95% confidence intervals (CIs).

Results: A k-nearest neighbour classifier based on 35 selected features was identified as the best performing
machine learning approach. Considering both the 45 enhancing foci and the 23 additional cases, this classifier
showed a sensitivity of 27/27 (100%, 95% CI 87–100%), a specificity of 37/41 (90%, 95% CI 77–97%), and an accuracy
of 64/68 (94%, 95% CI 86–98%).

Conclusion: This preliminary study showed the feasibility of a radiomic approach for the characterisation of
enhancing foci on breast MRI.
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Key points

� Radiomic signature could distinguish malignant
from benign enhancing foci on magnetic resonance
imaging of the breast

� In this study, we applied a “training with input
selection and testing “machine learning algorithm on

45 foci, using 8 confirmed benign lesions and 15
confirmed malignant lesions as reference cases

� Over 200 radiomic features were extracted.
� Overall, a k-nearest neighbour classifier based on 35

selected features showed an over 90% accuracy.

Background
Contrast-enhanced magnetic resonance imaging (MRI)
has emerged as a non-invasive radiation-free imaging
technique for the detection and diagnosis of breast le-
sions, substantially influencing the diagnosis, prognosis,
and treatment of patients with breast cancer [1–6].
This technique is able to detect also small enhancing

lesions, with 5mm or lower maximum diameter, which
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might be difficult to further characterise. These small
findings were defined by the American College of Radi-
ology Breast Imaging Reporting and Data System (BI-
RADS) as enhancing foci [7]. Depending on the spatial
resolution, it is difficult to evaluate their morphology
and dynamic behaviour, while the small size makes diffi-
cult to perform MRI-guided needle biopsy, so that their
changes are commonly longitudinally monitored with
serial examinations to reach a conclusive diagnosis [8].
Foci were frequently associated with an increased hor-
monal stimulation, but they can also represent the early
onset of a malignant lesion [9, 10]. Studies addressing
the malignancy rate of foci showed highly variable re-
sults, ranging from 2 to 23% [9–13]. Thus, the best man-
agement of foci is still under discussion. The issue is of
particular interest in high-risk women, especially consid-
ering the importance of early diagnosis in this group of
patients.
Until the recent rising of radiomics [14], computer-

based medical image analysis was focused on computer-
aided detection systems supporting the identification of
suspicious lesions deserving the attention of the radiolo-
gist and on computer-aided diagnosis systems, assisting
radiologists in decision-making [15]. Although radiomics
was a natural evolution of these systems, the objectives
of the two approaches were different. While computer-
aided detection or diagnosis systems aimed at delivering
a single answer (i.e. presence/absence of lesions; malig-
nant versus benign differentiation), radiomics was de-
signed to combine radiomic data from images with
patient history, risk factors, clinical investigation, and
other patient information to provide more powerful de-
cision support models [16]. Radiomics assumes that
medical images contain quantitative information that ra-
diologists are not able to perceive and that may be cor-
related to clinical end-points (such as lesion nature or
evolution as well as predictive information about treat-
ment efficacy) based on big data. Although there were
no universally recognised guidelines yet, the radiomic
workflow consists usually of the following main steps
[16]: clinical data and images collection; image segmen-
tation, features extraction (i.e. to obtain quantitative in-
formation about the tissue, also called “descriptors”);
definition of a machine learning (ML) model and model
validation, preferably against an independent dataset.
The aim of this observational retrospective study was

to test the ability to differentiate malignant from benign
foci on breast MRI through radiomic signature.

Methods
Study design and population
The local Ethics Committee of Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico approved this
retrospective study (protocol code CE-MRm; approved

on December 13, 2018). This study was supported by local
research funds of CDI Centro Diagnostico Italiano, a clin-
ical diagnostic centre. Due to the retrospective nature of
this study, no specific informed consent was necessary. In
this observational retrospective study, we reviewed
contrast-enhanced breast MRI examinations performed at
our Institution between January 2012 and December
2017, to create training/testing sets on which to apply and
evaluate the performance of our algorithms.
This data set consisted of:

� Patients with contrast-enhancing breast foci (enhan-
cing lesions smaller than 5 mm in diameter) with de-
finitive characterisation (benign or malignant)
confirmed by histopathology or with breast MRI or
ultrasound examination performed after at least 1
year

� Patients with benign breast lesions with 5 years of
MRI stability (unambiguous cases)

� Patients with malignant breast lesions
histopathologically confirmed (unambiguous cases)

Patients with incomplete or negative breast MRI ex-
aminations were excluded. Breast foci were defined fol-
lowing the ACR BI-RADS Atlas® 5th edition as tiny dots
of enhancement that does not clearly represent a space-
occupying lesion or mass and does not clearly show a
mass on unenhanced imaging [17].

MRI protocol
Images were acquired on a 1.5-T scanner (Philips Achieva,
Philips Medical Systems, Best, The Netherlands). Accord-
ing to clinical practice, examinations were performed with
the patient laying in prone position, with the breasts
inserted into a surface 16-channel phase-array coil. The
sequence taken into account was an axial T1-weighted fast
field-echo including inversion recovery with spectral at-
tenuated fat suppression, with a repetition time of 5.1 ms,
an echo time of 2.5 ms, a slice thickness of 1mm, and a
field of view of 340 × 340mm (in-plane resolution 1 × 1
mm). The protocol consisted of one unenhanced and four
contrast sequences, with a temporal resolution of 60 s.
Gadobenate dimeglumine (Multihance®, Bracco, Milan,
Italy) was used as a contrast agent at the dose of 0.1
mmol/kg (0.2mL/kg); the injection rate was 2mL/s. The
images acquired soon after contrast agent injection were
compared to the unenhanced ones.

Image and data analysis
Registration
MRI series were slice-wise co-registered to compensate
for patient motion. Registration was done using the Ima-
geJ StackReg plugin [18], based on an automatic subpixel
registration algorithm that minimises the mean square
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difference of intensities between a target and a floating
image [16]. Briefly, subvolumes of the MRI volume in-
cluding lesions and surrounding tissues were cropped
from unenhanced and contrast-enhanced datasets. After
that, the five extracted subvolumes were automatically
slice-wise co-registered by two-dimensional-affine trans-
form. The accuracy of co-registration was assessed by an
expert radiologist.

Segmentation
Manual lesion segmentation was carried out by one ex-
pert radiologist with more than 10 years of experience in
breast MRI on the co-registered images using ImageJ
[19]. Due to the spatial coherence of the unenhanced
and enhanced images after co-registration, only one le-
sion mask was defined for each contrast-enhanced series.
Images defining segmented lesion areas for each slice
were defined as label images. Label and contrast-
enhanced images were cropped to the bounding box
containing lesions to avoid the analysis of unnecessary
parts of the image. In Fig. 1, an example of a focus on
unenhanced (T0) and contrast-enhanced (T1–T4) im-
ages, with its segmentation, is shown.

Feature extraction, selection, and classification
Features were calculated using a dedicated software de-
veloped in C++ based on the ITK framework [18]. The
extracted features were three-dimensional (3D) shape
features, which describe the geometric shape of the seg-
mented area and the geometric properties [15, 19, 20],
intensity, histogram-based features which reduce the 3D
information of a volume into a single histogram, and 3D
texture-based features based on grey level co-occurrence
matrix [17, 19, 20] or grey level run length matrix, also
known as second-order statistics features, which are

obtained calculating the relationship between adjacent
voxels (Table 1) [20]. For texture-based 3D features, the
mean and standard deviation of the values calculated
along all the 3D directions were computed. Features ex-
tracted separately from the five images, distinguished
using the code T0, T1, T2, T3, and T4, provide a de-
scription of the dynamic evolution of features over time
due to the contrast wash-in/wash-out. Semeion’s train-
ing with input selection and testing (TWIST) algorithm
[21] is based on an evolutionary strategy aimed at solv-
ing the features selection and training/test splitting
problems simultaneously. To speed up the selection
process, performances of selected features were evalu-
ated by means of k-nearest neighbour (kNN), a fast and
robust classification algorithm. The optimal feature set
was used to build and validate the final kNN model.

Statistical analysis
Performances of the optimal classification model were
expressed in terms of sensitivity, specificity, accuracy,
positive predictive value, negative predictive value, area
under the curve (AUC) at receiver operating characteris-
tic (ROC) analysis, positive likelihood ratio, and negative
likelihood ratio. For each parameter, 95% confidence in-
tervals (CI) were calculated according the binomial dis-
tribution. For k-nearest neighbour analysis, a k value of
3 was chosen. The probability of a case to belong to the
positive class, P (+), was calculated on the basis of the
class of the three nearest neighbours. P (+) can assume
only three values: 1 if all three neighbours belongs to the
positive class, 0.66 if 2 of the neighbours belongs to the
positive class and one to the negative, 0.33 if 1 neigh-
bour belongs to the positive class, and 0 if all 3 neigh-
bours are of the negative class. The probability threshold
applied to assign a case to the positive or negative class

Fig. 1 Breast magnetic resonance imaging showing in T0 the first (unenhanced) image and from T1 to T4 the contrast-enhanced images, where
the wash-in and wash-out phenomena give information about the malignant or benign nature of the lesion. In the last image (“labels”), the
segmented focus is coloured in red while normal breast tissues are coloured in pink
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was set to 0.5. Probability values P (+) and class assign-
ments were finally used to draw the ROC curve. The ob-
tained ROC curve was used to obtain the AUC value.

Results
Population
A total of 1538 contrast-enhanced breast MRI examina-
tions in female patients performed at our institution
were retrieved from our database. After selection, follow-
ing the inclusion criteria, a total of 68 lesions were ana-
lysed using the TWIST algorithm. Results are
summarised in Table 2. The dataset obtained consisted
of:

� Forty-five patients (median age 49 years,
interquartile range [IQR] 44–54 years) had one
enhancing focus each: 33 of them were benign with
≥ 1-year negative imaging follow-up, while 12 of
them were malignant lesions. Among the 12
malignant lesions, for 8 lesions, the histopathology
exams were retrieved (2 ductal cribriform, 5
ductal no special type, 1 ductal solid, and 1 ductal
papillary) and were in situ; for the other 4
malignant lesions, no detailed pathologic
information was available

� Eight patients (median age 46 years, IQR 44–56
years; median size 10 mm, IQR 7–14 mm) had one
benign nodule each, confirmed after 5 years of MRI
stability.

� Fifteen patients had one malignant lesions each
(median age 55 years, IQR 45–66 years; median size
15 mm, IQR 10–24 mm) confirmed at the
histopathology exam: 4 ductal cribriform, 7 ductal
no special type, 2 ductal solid, 1 ductal papillary, and
1 tubular; of these 15 malignant lesions, 13 were
invasive and 2 in situ.

Feature extraction
The final features set obtained using the TWIST algo-
rithm was reported in Table 3. In total, 43 features were
extracted from five-time points, resulting in 215 features
for each case, which described the dynamic evolution of
the contrast agent in the focus. The most discriminating
features extracted using the TWIST algorithm are also
summarised in Table 3. Intensity- and texture-based fea-
tures, which resulted to be the most important for the

Table 1 Features extracted from each image and time-point of the series

Feature class

Intensity featuresa Shape featuresb GLCM featuresc (mean and
standard deviation computed
along the 3D directions)

GLRLM featuresd (mean and standard
deviation computed along the 3D directions)

Features Max Eccentricity Energy Short run emphasis

Min Elongation Entropy Long run emphasis

Mean Major axis length (mm) Inversion different moment Grey level non-uniformity

Sigma Minor axis length (mm) Inertia Run length non-uniformity

Variance Volume (mm3) Cluster shade Low grey level run emphasis

Integrated intensity Cluster prominence High grey level run emphasis

Short run low grey level emphasis

Short run high grey level emphasis

Long run low grey level emphasis

Long run high grey level emphasis

3D three-dimensional
aIntensity features: first order statistics calculated from pixel intensities
bShape features: 3D shape descriptors
cGrey level co-occurrence matrix features: they are reported as average and standard deviation computed along all the three-dimensional directions
dGrey level run length matrix features: they are reported as average and standard deviation computed along all the 3D directions

Table 2 Study population (patients with enhancing foci and
with unambiguous lesions)

Characteristic Benign Malignant Total

Patients with enhancing foci 33 12 45

Patients with unambiguous lesions 8 15 23

Total 41 27 68

Patients aged 30–39 years 6 3 9

Patients aged 40–49 years 19 8 27

Patients aged 50–59 years 11 4 15

Patients aged 60–69 years 4 6 10

Patients aged 70–79 years 1 6 7

Total 41 27 68

Patients age (years) 47 (44–52) 58 (45–70) 52 (44–59)

Patients’ age is given as median (interquartile range)
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ML systems to differentiate benign from malignant le-
sions, were selected. As shown in Table 3, three of the
extracted features refer to the pre-contrast image and 32
refer to images acquired after the contrast injection split
over the different time points.

The second result of the TWIST algorithm was the
subdivision of the overall dataset into two statistically
homogeneous features-based groups: group A and B
consisted of 37 lesions (16 malignant and 21 benign)
and of 31 lesions (11 malignant and 20 benign),

Table 3 Features extracted using the TWIST (training with input selection and testing) algorithm

Feature Class Statistics Time point Number of features

Energy GLCM SD T0

3
Inversion different moment GLCM SD T0

Run length nonuniformity GLRLM SD T0

Entropy GLCM SD T1

5

Long run emphasis GLRLM Mean T1

Inversion different moment GLCM SD T1

Cluster shade GLCM Mean T1

Long run high grey level emphasis GLRLM Mean T1

Entropy GLCM Mean T2

12

Cluster shade GLCM Mean T2

Short run emphasis GLRLM SD T2

Short run low grey level emphasis GLRLM SD T2

Inertia GLCM SD T2

Cluster shade GLCM SD T2

Short run emphasis GLRLM SD T2

Long run emphasis GLRLM SD T2

Run length non-uniformity GLRLM Mean T2

Run length non-uniformity GLRLM SD T2

Short run low grey level emphasis GLRLM SD T2

Long run low grey level emphasis GLRLM Mean T2

Variance Intensity T3

8

Short run emphasis GLRLM SD T3

Run length non-uniformity GLRLM Mean T3

Low grey level run emphasis GLRLM Mean T3

Short run high grey level emphasis GLRLM Mean T3

Long run low grey level emphasis GLRLM SD T3

Max Intensity T3

Inertia GLCM Mean T3

Integrated intensity Intensity T4

7

Cluster prominence GLCM SD T4

Grey level non-uniformity GLRLM Mean T4

Short run high grey level emphasis GLRLM SD T4

Long run low grey level emphasis GLRLM SD T4

Mean Intensity T4

Long run emphasis GLRLM SD T4

T0, T1, T2, T3, and T4 represent the time-points of the dynamic series when the features were selected; the number represents the quantity of features selected
for each time-point
TWIST Training with input selection and testing, GLCM Grey level co-occurrence matrix, GLRLM Grey level run length matrix, SD Standard deviation
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respectively. On these, classification performances were
calculated twice: firstly, using A as training set and B as
test set and subsequently vice versa. Results of the final
kNN model built with the 35 selected input variables are
shown in Table 4. The classifier showed a sensitivity of
27/27 (100%, 95% CI 87–100%), a specificity of 37/41
(90%, 95% CI 77–97%), and an accuracy of 64/68 (94%,
95% CI 86–98%). In particular, 3 out of the 4 misclassi-
fied cases were enhancing foci and one was an unam-
biguous benign case. All errors were false positives.

Discussion
This preliminary study demonstrated that ML associated
with radiomics may successfully distinguish malignant
form benign enhancing foci on breast MRI examina-
tions, potentially outperforming human assessment.
During this study after the patient selection step, the

following steps were applied: an image registration, a
manual lesion segmentation, and the feature extraction,
selection, and classification step.
Feature selection and model validation are two signifi-

cant methodological issues related to the application of
ML, especially when dealing with small databases and a
large number of variables. Feature selection is a proced-
ure to identify and select the most informative variables
to feed the statistical model. Validation is the evaluation
step of the classification procedure, and its objective was
to test if the procedure was generally applicable or fitted
to the particular dataset used to build the classification
system (overfitting). Validation can be carried out by
splitting the dataset into two subsets, one used to train
the classifier and one to test it. Training/testing sets

splitting is critical especially when dealing with small
datasets because random splitting can lead to statistically
different sets containing not homogeneous information.
The proposed approach, ultimately based on a simple

kNN classifier, provided 100% sensitivity and 90% speci-
ficity. Notably, all the misclassification errors were false
positives that are preferred to false negatives from a clin-
ical perspective. Features selected by the TWIST algo-
rithm were mainly from contrast-enhanced images
(eight features/image) while only three were selected
from the unenhanced images. This suggests that contrast
enhancement provides information that can be benefi-
cially exploited by ML methods. Interestingly, the im-
aging time-point with the highest prediction relevance
for the proposed ML system was the second (T2) after
injection, with 12 features selected from this time-point,
obtained 140 s after injection, taking into consideration
our temporal resolution (60 s) and the initial 20 s of
waiting time between the contrast agent injection and
the first acquisition. This result was coherent, according
to our breast radiologists, to what happens in the
human-based diagnosis, where the first one-two sub-
tracted series were the basis for diagnosis and usually
represented on maximum intensity projections.
These preliminary results were evaluated in the general

frame work of breast cancer management. GLOBOCAN
[22] estimated 2,088,849 new breast cancer cases and 626,
679 deaths worldwide in 2018. Only in the USA, 138,000
women die every year. In general, a woman has a 1 to 8
chance of developing breast cancer in her lifetime. High
tumour stage at diagnosis was related to a worse prognosis
for the patient and to higher costs for the health care

Table 4 Diagnostic performance of the TWIST algorithm

Training/testing sets

A/B B/A Total 95% confidence interval (%)

Sensitivity 100% 100% 100% 87–100

Specificity 90% 91% 90% 77–97

Accuracy 94% 95% 94% 86–98

Positive predictive value 85% 89% 87% 70–96

Negative predictive value 100% 100% 100% 91–100

True positives 11 16 27

True negatives 18 19 37

False positives 2 2 4

False negatives 0 0 0

Positive likelihood ratio 10 11 10

Negative likelihood ratio 0 0 0

Area under the curve 0.93 0.95

0.94*

Results are presented for both analysis, in the second column for training set A and testing set B, in the third column with training set B and testing set A. In the
fourth column, the total/mean value of the two results was calculated. Group A was composed of 37 cases, group B was composed of 31 cases.
*Area under the curve (AUC) average value between 0.93 (AUC A/B) and 0.95 (AUC B/A)
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systems [22, 23]. In fact, early breast cancer detection and
prediction of response to treatments became the main ob-
jective of the actual clinical practice and research [24]. In
recent years, breast MRI was included among the diagnos-
tic methodologies as third level examination. Technical
improvements, uprising availability of breast coils, and in-
creasing care to minimise radiation has expanded the
number of performed breast MRI investigations.
However, breast MRI can detect equivocal lesions, es-

pecially small enhancing foci, with imaging features that
do not allow a clear human-based malignant/benign dif-
ferentiation. The impact of the proposed ML method
could be positive from the clinical, economic, and psy-
chological point of view. Forecasting a likely benign en-
hancing focus would lead the patient to a more serene
approach to the next follow-up. Conversely, defining an
enhancing focus as probably malignant would suggest to
carry out a targeted biopsy.
In this study, only data from the dynamic data set was

used to build the statistical model. However, additional
clinical data, not necessarily derived from imaging exam-
inations, could be added to the dataset to enhance the
performance and robustness of the method.
The small sample size used in this study was the main

limitation to take into consideration. We are aware that
with small samples and unbalanced dataset (i.e. datasets
containing much more features than patients), the as-
sessment of model reliability is weak and models are as-
sociated with a high risk of overfitting. In these cases,
cross-validation methods could mitigate the risk of over-
fitting and provide more reliable estimation of models
performances. Cross-validation methods were generally
based on the random splitting of the available data in
two subsets used for parameters estimation and testing
respectively. TWIST, instead, adopts a statistically driven
approach to split the available dataset into training and
test sets that have been demonstrated to outperform
traditional methods such as the k-fold approach and was
successfully applied on several clinical datasets [25]. An-
other common problem with ML was imbalanced popu-
lation samples, when cases are not equally distributed
across classes. To avoid this problem, this study adopted
a biased patient selection, with a high percentage of ma-
lignant patients included to balance benign cases. As a
consequence, malignancy rate of the current study data-
set was higher compared to other studies, for which a
malignancy rate for foci from 2 to 23% [9–13] was
reported.
Despite these limitations, this preliminary study sug-

gests that ML could support the radiologist in the clin-
ical decision making for enhancing foci on breast MRI.
To turn this result into a robust clinical tool, two further
steps should be carried out: first, the variability associ-
ated to differences in MRI sequences, devices and

contrast agents should be addressed, and second, the in-
terobserver variability in tumour segmentation as well as
the patient-related variability must be investigated. The
result of this work, if confirmed to a larger scale, might
lead to decrease the uncertainty in the clinical decision
making regarding enhancing foci on breast MRI.
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