
ORIGINAL ARTICLE Open Access

Reproducibility of semiautomated body
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Abstract

Background: Segmentation of computed tomography (CT) images provides quantitative data on body tissue
composition, which may greatly impact the development and progression of diseases such as type 2 diabetes
mellitus and cancer. We aimed to evaluate the inter- and intraobserver variation of semiautomated segmentation,
to assess whether multiple observers may interchangeably perform this task.

Methods: Anonymised, unenhanced, single mid-abdominal CT images were acquired from 132 subjects from two
previous studies. Semiautomated segmentation was performed using a proprietary software package. Abdominal
muscle compartment (AMC), inter- and intramuscular adipose tissue (IMAT), visceral adipose tissue (VAT) and
subcutaneous adipose tissue (SAT) were identified according to pre-established attenuation ranges. The
segmentation was performed by four observers: an oncology resident with extensive training and three
radiographers with a 2-week training programme. To assess interobserver variation, segmentation of each CT image
was performed individually by two or more observers. To assess intraobserver variation, three of the observers did
repeated segmentations of the images. The distribution of variation between subjects, observers and random noise
was estimated by a mixed effects model. Inter- and intraobserver correlation was assessed by intraclass correlation
coefficient (ICC).

Results: For all four tissue compartments, the observer variations were far lower than random noise by factors
ranging from 1.6 to 3.6 and those between subjects by factors ranging from 7.3 to 186.1. All interobserver ICC was
≥ 0.938, and all intraobserver ICC was ≥ 0.996.

Conclusions: Body composition segmentation showed a very low level of operator dependability. Multiple
observers may interchangeably perform this task with highly reproducible results.
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Key points

� Body composition data may predict development
and progression and aid treatment of
noncommunicable diseases such as type 2 diabetes
mellitus and cancer.

� Semiautomated body composition segmentation on
abdominal CT images showed a very low inter- and
intraobserver variation (intraclass correlation
coefficient from 0.938 to 0.996).

� Semiautomated body composition segmentation may
be performed by non-radiologists after a short
period of training.

Background
Computed tomography (CT) is part of the routine work-
up in many patient groups. With special image segmen-
tation software, high-precision data on body compos-
ition, i.e. the quantification and distribution of different
tissues, may be extracted from these images [1].
Body composition states such as obesity and sarcope-

nia are associated with the risk of development and pro-
gression of noncommunicable diseases as well as overall
survival [2–6]. Excess adipose tissue in the abdominal re-
gion increases the risk of type 2 diabetes mellitus (T2DM),
cardiometabolic diseases and some cancers [2, 7]. Sarco-
penia is a recognised diabetic and oncologic complication,
and insulin resistance is a central mechanism both in sar-
copenia and obesity-related diseases [8–12]. Central obes-
ity with sarcopenia, i.e. sarcopenic obesity, may increase
the effects on metabolic disorders, cardiovascular diseases
and mortality [13].
Image segmentation is increasingly used as a research

tool in areas such as oncology, endocrinology, cardiovas-
cular disease, nutrition, obesity and ageing [1, 14, 15].
Semiautomated methods are faster, easier and more versa-
tile than manual delineation and without loss of precision
[14, 16–18]. Segmentation is validated against cadaver stud-
ies and offers advantages to dual-energy X-ray absorpti-
ometry scans and bioelectric impedance analysis [19–21].
Since the cross-sectional areas at the third lumbar verte-

bra are linearly related to whole body mass of muscle, vis-
ceral adipose tissue (VAT) and subcutaneous adipose tissue
(SAT), a single axial image is often acquired in research set-
tings to reduce cost or radiation exposure [1, 22, 23].
Body composition analysis is also valuable in current

clinical practice such as identification of cachexia in pa-
tients with cancer and is included in the newly published
GLIM (Global Leadership Initiative on Malnutrition)
criteria for malnutrition [24–28]. Assessment of nutri-
tional status in patients with noncommunicable diseases
such as T2DM and cancer may facilitate personalised
and precision medicine and greatly impact treatment
and prognosis [2, 7, 13, 25].

In order to acquire large amounts of data, for clinical
or research purposes, the process of image segmentation
and analysis must be quick and precise. It would be a
practical advantage if image segmentation could be per-
formed by a group of personnel interchangeably rather
than one dedicated person.
Our aim was to evaluate the inter- and intraobserver

variation of semiautomated body composition segmenta-
tion of CT images in both healthy and diabetic subjects,
to assess whether multiple observers may interchange-
ably perform segmentation with comparable results.

Methods
Ethics and study population
Participant consent and approval from the Regional
Committee for Medical and Health Research Ethics were
previously obtained.
We obtained CT images of 41 subjects with T2DM en-

rolled in the Diabetes-study [29] and 91 healthy male
subjects from the INFO-study [30]. The Diabetes-study
population was aged 29 to 45 years (median 41), 49%
males, with a mean body mass index (BMI) of 34.0 kg/m2.
The INFO-study population was aged 38 to 45 years
(median 40), all males, with a mean BMI of 26.4 kg/m2.

Computed tomography
Anonymised, unenhanced single abdominal CT images
were acquired. In the Diabetes-study, CT images were
obtained with a Somatom Volume Zoom, 4-slice CT
scanner (Siemens Healthineers, Erlangen, Germany) at 5
cm above L4/L5 level in women and 10 cm above L4/L5
level in men with 120 kVp, 100 mAs and slice thickness
4 mm. In the INFO-study, CT images were obtained
with a Somatom Sensation 64, 64-slice scanner (Siemens
Healthineers, Erlangen, Germany) at L3/L4 level with
120 kVp, 200mAs and slice thickness 5 mm.

Image analysis
Semiautomated body composition segmentation of the
CT images was performed with the SliceOmatic software
package (v 5.0 rev 7b, Tomovision, Magog, QC, Canada).
Body composition segmentation included four tissue

compartments: abdominal muscle compartment (AMC),
inter- and intramuscular adipose tissue (IMAT), VAT
and SAT.
The segmentation was performed by four observers:

three radiographers (radiology technicians) and one on-
cology resident. The resident had previously received
training in the use of SliceOmatic at the University of
Alberta hospital, Edmonton, AB, Canada. Over the
course of 2 weeks, the resident held three 1-h teaching
sessions for the technicians. This was followed by 7 to
12 h of practical training in the use of the software with
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individual feedback from the resident and two radiolo-
gists supervising the study.
Segmentation was performed according to the Alberta

protocol, defined and used at the Alberta Hospital (AB,
Canada), as shown in Fig. 1 [31]. By this definition,
AMC is muscle tissue free of adipose tissue, not anatom-
ical muscle which may include intramuscular fat, and
IMAT was segmented separately as adipose tissue within
the muscle fasciae. For each tissue, segmentation was
restricted to the following predefined attenuation
ranges: − 29 to 150 Hounsfield Units (HU) for AMC, −
190 to − 30 HU for IMAT and SAT and − 150 to − 50
HU for VAT [19, 31, 32].
The three radiographers (observers 1, 2 and 3) performed

segmentation of all the CT images from both studies. They
were organised into alternating pairs so that each image
was analysed independently by two radiographers. To
evaluate intraobserver variation, the three radiographers
performed a second segmentation of the same images from
the Diabetes-study, after a 1-month delay. The oncology
resident (observer 4) performed segmentation of all images
from the Diabetes-study. The observers were blinded to
each other’s results and their own previous results. A flow
chart describing the distribution of performed segmenta-
tions between the observers is shown in Fig. 2.
From the different modes, available in the SliceOmatic

software, the observers utilised the Region growing-mode
with the Paint and Grow 2D options. This mode allowed
the users to delineate the different types of tissue based
on predefined attenuation ranges. The tissue compart-
ments were tagged in a specific order, starting with
AMC followed by SAT, VAT and IMAT. Although the
software could delineate these four compartments semiau-
tomatically using the Grow 2D option, all the segmented
compartments were manually adjusted in each image with
the Paint tool to ensure that the compartments had been
segmented correctly, especially around the muscle with
nearby tissues of similar density such as bowels or kidneys,
but also around vertebra and IMAT.

Exclusion criteria
CT images with inferior quality due to noise, respiratory
artefacts or other movement artefacts were excluded
from analysis. Images where AMC was cut from the field
of view (FOV) bilaterally were also excluded. In images
where the oblique or transverse abdominal muscles were
cut unilaterally from the FOV, AMC was estimated by
segmentation of the contralateral AMC multiplied by
two. In images where SAT or VAT was cut unilaterally
or bilaterally from the FOV, segmentation of the affected
tissue compartment was not performed.

Statistical analysis
Segmentation data in square centimetres per tissue com-
partment for each image was exported from SliceOmatic
to Microsoft Excel (version 14.0, Microsoft Corporation,
Redmond, WA, USA) and analysed in IBM SPSS Statis-
tics (version 23, IBM Corporation, Armonk, NY, USA)
and R (version 3.3, www.r-project.org).
Descriptive statistics are presented as median, mini-

mum, maximum and percentiles. Normal distribution of
measurement data was evaluated with Q-Q plots and
Shapiro-Wilk tests.
For each of the four tissue compartments, the

underlying variations in the measurement data be-
tween individual subjects, individual observers and re-
sidual variation (random noise) were analysed with
mixed effects models. Different levels of variation and
interactions between variations were evaluated in three
different potential mixed effects models named A, B and
C. All models included variation between individual sub-
jects and random noise. Additionally, model A included
general observer to observer variation, model B included
systematic variation between observers in how segmenta-
tion was performed and model C included both sources of
variation.
Parameters for each model were estimated by re-

stricted maximum likelihood. Model fit for the three
models was evaluated by Akaike information criterion

Fig. 1 Example of segmentation. Original computed tomography image (a). Segmented image (b). Attenuation ranges defined for each
segmented tissue (c)
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(AIC), and results from the best fitting model presented
as estimated standard deviations with 95% confidence
intervals.
Mixed effects models assume normally distributed re-

siduals, which were not present in the measurement data
as seen in the Q-Q plots. The efficiency of the applied
estimation routine was evaluated by simulations, and a
robustness analysis was performed on data transformed
to achieve normally distributed residuals.
In addition to the mixed effects model estimates, intra-

class correlation coefficients (ICCs) were calculated.
Two-way random effect ICC was used for overall vari-
ation in segmentation results, and single measurement
ICC for intraobserver variation. Confidence intervals for
the two-way ICC were based on a random effects model
with percentile bootstrap confidence intervals based on
10,000 replications randomly sampling subjects and
observers.
Subgroup analyses were performed for the Diabetes-

study and the INFO-study in order to explore differences
in variations between the subject groups.

Results
Body composition segmentation was performed on 120
of 132 CT images. Eight were excluded from analysis
due to compartments being cut from the field of view,
two due to respiratory or movement artefacts and two
due to image noise. From the 120 images, we acquired
346 sets of segmentation data for AMC, IMAT and VAT
and 338 sets for SAT.
Q-Q plots showed that none of the segmentation

data were normally distributed (all Shapiro-Wilk tests
p < 0.010). Descriptive statistics of segmentation data
of the four tissue compartments are shown in Table 1.
For each of the four tissue compartments, AIC showed

best fit for model A, modelling only general observer to
observer variation (Table 2). Therefore, systematic vari-
ation between observers in how segmentation was per-
formed was not included in the final mixed effects model.
For both studies combined, the variations between ob-

servers were consistently less than variation between
subjects for all four tissue compartments by a factor of
7.3 to 186.1. Variations between observers were also less

Fig. 2 Distribution of segmentation between observers. Segmentation of each CT image was performed by two or more observers to evaluate
interobserver variation. A repeated segmentation of a subset of CT images was performed after a 1-month delay to evaluate
intraobserver variation
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than random noise by a factor of 1.6 to 3.6 (Table 3, Fig. 3).
Mixed effects model analysis yielded results with very simi-
lar interpretations on non-transformed data (Table 3) and
data transformed to achieve normally distributed residuals
(Additional file 1: Table S1). Simulations of non-normal
distributed data showed efficient restricted maximum
likelihood estimates also with similar violations of the
normally distribution assumption as seen in our data
(results not presented).
For both studies combined, the interobserver ICC

ranged from 0.938 to 1.000 for all four compartments,
with IMAT scoring the lowest (Table 4). All intraobser-
ver ICC ranged from 0.996 to 1.000.

Subgroup analysis
For the Diabetes-study, the variations between observers
were consistently less than the variations between sub-
jects for all four tissue compartments by a factor of 10.0
to 212.1 (Table 3). The variations between observers

were also less than random noise by a factor of 1.8 to
4.0. For all four compartments, the interobserver ICC
ranged from 0.961 to 1.00 (Table 4).
For the INFO-study, the variations between observers

were consistently less than the variations between sub-
jects for all four tissue compartments by a factor of 3.1
to 99.7. The variations between observers were also less
than random noise by a factor of 1.2 to 3.7. For IMAT,
the interobserver ICC was 0.759, and for the remaining
three compartments ICC ranged from 0.987 to 1.00.

Discussion
Our results show that after a short period of training
non-radiologist physicians and radiographers can per-
form semiautomated segmentation of body composition
on abdominal CT images with close to identical results.
Van Vugt et al. [17] showed similar results with close

to perfect ICCs for inter- and intraobserver agreement.
However, their observers had extensive experience in
skeletal muscle and adipose tissue area measurement,
whereas our inexperienced technicians produced similar
results with only a short period of training.
Our results underline that the intuitive nature of the

software and the standardised process of semiautomated
segmentation produces consistent results even when
performed by operators with less radiological experience.
This facilitates segmentation of larger number of images
without loss of data quality, which increases the value of

Table 1 Descriptive statistics of segmentation data per study

Compartment n Median (cm2) Min-max (cm2) P25%–P75% (cm2)

AMC

Total 346 170.1 65.4–250.1 141.5–190.0

Diabetes-study 186 142.7 65.4–201.2 132.1–164.4

INFO-study 160 189.6 150.1–250.1 177.4–189.6

IMAT

Total 346 5.3 0.2–54.9 2.7–10.5

Diabetes-study 186 9.0 1.4–54.9 5.6–15.2

INFO-study 160 2.9 0.2–15.6 1.6–4.7

VAT

Total 346 124.3 8.0–297.4 68.8–188.9

Diabetes-study 186 173.9 32.3–297.4 123.2–217.2

INFO-study 160 69.5 8.0–266.6 35.0–119.2

SAT

Total 338 209.4 38.8–609.0 121.6–334.4

Diabetes-study 183 278.7 74.6–609.0 197.0–415.5

INFO-study 155 153.5 38.8–432.0 96.7–208.7

P25% 25 percentile, P75% 75 percentile, AMC abdominal muscle compartment,
IMAT inter- and intramuscular adipose tissue, VAT visceral adipose tissue, SAT
subcutaneous adipose tissue

Table 2 Model fit evaluated by Akaike information criterion
(AIC) for three mixed effects models

Model AMC IMAT VAT SAT

A: Only general observer to observer variation 2240 1813 2594 2508

B: Only systematic variation between observers
in how segmentation was performed

2247 1866 2635 2527

C: Full model (A + B) 2242 1815 2596 2510

Data are AIC values. Lower AIC values indicate better model fit
AMC abdominal muscle compartment, IMAT inter- and intramuscular adipose
tissue, VAT visceral adipose tissue, SAT subcutaneous adipose tissue

Table 3 Distribution of variation between subjects, observers
and random noise per study

Compartment Subjects Observers Random noise

SD 95% CI SD 95% CI SD 95% CI

AMC

Total 32.2 28.5–36.5 0.5 0.2–1.6 1.8 1.7–2.0

Diabetes-study 29.3 23.6–36.5 0.4 0.0–1.3 1.6 1.4–1.8

INFO-study 20.2 17.4–23.6 0.6 0.0–2.7 2.2 1.9–2.7

IMAT

Total 7.3 6.5–8.3 1.0 0.5–2.5 1.6 1.4–1.7

Diabetes-study 10.0 8.0–12.5 1.0 0.5–2.8 1.7 1.6–2.0

INFO-study 2.5 2.1–3.0 0.8 0.3–2.0 1.2 1.0–1.4

VAT

Total 71.6 63.3–81.2 1.4 0.7–4.2 2.6 2.4–2.9

Diabetes-study 59.1 47.7–73.8 1.2 0.5–3.8 2.8 2.5–3.1

INFO-study 60.1 51.7–70.1 1.8 0.8–7.0 2.2 1.9–2.6

SAT

Total 130.3 114.8–148.2 0.7 0.3–2.0 1.9 1.7–2.1

Diabetes-study 148.5 119.2–186.3 0.7 0.3–2.1 1.8 1.6–2.1

INFO-study 89.7 76.8–105.1 0.9 0.3–3.8 1.9 1.7–2.3

SD standard deviation, CI confidence interval, AMC abdominal muscle
compartment, IMAT inter- and intramuscular adipose tissue, VAT visceral
adipose tissue, SAT subcutaneous adipose tissue
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this method, whether used for patient follow-up in clin-
ical settings or measurements of research endpoints.
From the three mixed effects models, AIC consistently

showed superior fit for model A, with only general observer
variation. This strengthens the assumption that there was a
variation between observers, but no systematic variation be-
tween observers in how segmentation was performed.
Both the mixed effects model and the ICC showed, con-

sistently for all four tissue compartments, that observer
variation was less than variation due to random noise and
negligible compared to the variation between individual
subjects. Consequently, a single dedicated person is not
necessary for the acquisition of reliable segmentation
data, and segmentation may be performed interchange-
ably by any member of a group of trained radiogra-
phers. This allows for greater flexibility and makes

feasible the acquisition of greater amounts of data or
even the future adoption into clinical practice.
In our experience, segmentation of AMC and SAT was

relatively straightforward, which is supported by our data.
The slightly higher observer variation observed for VAT
in the mixed effects model may indicate that segmentation
of this compartment is more demanding than that of
AMC and SAT, which is in line with our experience.
Structures in the same anatomical space as VAT, such as
the viscera, the mesentery, the intestinal wall and fatty
contents of the intestines, may complicate segmentation.
The slightly lower interobserver ICC for IMAT may pri-

marily be due to the relatively small variation in this tissue
compartment between subjects compared to AMC, VAT
and SAT. Contributing factors may be the relatively small
area of IMAT in each image and a less stringent definition
of this compartment. These explanations are further sup-
ported by the subgroup analyses specifically showing a
lower interobserver ICC for IMAT in the INFO-study
subject group, although with a wide confidence inter-
val. The median area of IMAT in the INFO-study
was approx. one third compared to the Diabetes-
study. Hence, the relative effect of observer variation
was larger in the IMAT measurement resulting in a
lower ICC. However, in our opinion, the subgroup
analyses confirm that our results are valid for both
groups separately.
We decided to present the results of the mixed effects

model even though the requirement of normally distrib-
uted residuals was not met. Maximum likelihood estima-
tion on medium-sized datasets tends to give reasonable
estimates even with some violations of the modelling as-
sumptions, which we confirmed with simulations. The
analysis of non-transformed data allowed us to present
the results as standard deviations, which could be com-
pared across the segmented compartments and are easier
to understand and interpret.
In order to control the robustness of the method, we

carried out a sensitivity analysis with the same model on
transformed data with approximately normally distrib-
uted residuals. This sensitivity analysis showed similar

Fig. 3 Distribution of variation between random noise, observer and subject for each segmented tissue. AMC abdominal muscle compartment,
IMAT inter- and intramuscular adipose tissue, VAT visceral adipose tissue, SAT subcutaneous adipose tissue

Table 4 Inter- and intraobserver variation measurements

Compartment Intraobserver ICCa Interobserver ICC (95% CI)

AMC

Total 0.997–0.999 0.997 (0.995–0.999)

Diabetes-study 0.997 (0.994–0.999)

INFO-studya 0.987 (0.978–0.999)

IMAT

Total 0.997–0.999 0.938 (0.879–0.992)

Diabetes-study 0.961 (0.890–0.994)

INFO-studya 0.759 (0.568–1.000)

VAT

Total 0.998–1.000 0.998 (0.998–1.000)

Diabetes-study 0.997 (0.995–1.000)

INFO-studya 0.998 (0.996–1.000)

SAT

Total 1.000–1.000 1.000 (1.000–1.000)

Diabetes-study 1.000 (1.000–1.000)

INFO-studya 0.999 (0.999–1.000)

ICC intraclass correlation coefficient, CI confidence interval, AMC abdominal
muscle compartment, IMAT inter- and intramuscular adipose tissue, VAT
visceral adipose tissue, SAT subcutaneous adipose tissue
aObservers 1, 2 and 3
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results, confirming the validity of our results, though in
a format which is more difficult to understand and
interpret.
Limitations of our study should be taken into account.

Our study was limited to one, specific software, and our
results may not apply perfectly to other segmentation
tools. Furthermore, we did not account for variation as-
sociated with image acquisition such as the level or angle
of the CT slice [1]. In addition, the exclusion of 12 im-
ages due to artefacts and noise show that not all ac-
quired images are suitable for segmentation and that
standardised acquisition protocols are necessary. Fur-
thermore, the time spent performing segmentation was
not specifically measured.
We conclude that semiautomated body composition

segmentation using SliceOmatic showed a very low level
of operator dependability. Hence, multiple observers
may interchangeably perform body composition segmen-
tation of abdominal CT with close to identical results in
a clinical or research setting.

Additional file

Additional file 1: Table S1. Distribution of variation between subjects,
observers, and random noise for transformed, normally distributed data.
(DOCX 18 kb)
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