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Abstract

Background: To develop a supervised machine learning (ML) algorithm predicting above- versus below-median
overall survival (OS) from diffusion-weighted imaging-derived radiomic features in patients with pancreatic ductal
adenocarcinoma (PDAC).

Methods: One hundred two patients with histopathologically proven PDAC were retrospectively assessed as training
cohort, and 30 prospectively accrued and retrospectively enrolled patients served as independent validation cohort (IVO).
Tumors were segmented on preoperative apparent diffusion coefficient (ADC) maps, and radiomic features were extracted.
A random forest ML algorithm was fit to the training cohort and tested in the IVC. Histopathological subtype
of tumor samples was assessed by immunohistochemistry in 21 IVC patients. Individual radiomic feature
importance was evaluated by assessment of tree node Gini impurity decrease and recursive feature elimination. Fisher's
exact test, 95% confidence intervals (Cl), and receiver operating characteristic area under the curve (ROC-AUC) were used.

Results: The ML algorithm achieved 87% sensitivity (95% IC 67.3-92.7), 80% specificity (95% CI 74.0-86.7), and ROC-AUC
90% for the prediction of above- versus below-median OS in the IVC. Heterogeneity-related features were highly ranked
by the model. Of the 21 patients with determined histopathological subtype, 8/9 patients predicted to experience below-
median OS exhibited the quasi-mesenchymal subtype, whilst 11/12 patients predicted to experience above-median OS
exhibited a non-quasi-mesenchymal subtype (p < 0.001).

Conclusion: ML application to ADC radiomics allowed OS prediction with a high diagnostic accuracy in an IVC. The high

overlap of clinically relevant histopathological subtypes with model predictions underlines the potential of quantitative
imaging in PDAC pre-operative subtyping and prognosis.

Keywords: Machine learning, Diffusion magnetic resonance imaging, Pancreatic carcinoma, Radiomics, Survival analysis

Key points e Whole-tumor radiomic analyses can capture and
assess heterogeneity and its impact.
e DPancreatic cancer is a morphologically and e This study applies machine learning to radiomic
genetically heterogeneous tumor entity. features derived from diffusion-weighted magnetic
e Histopathological subtypes of pancreatic cancer resonance imaging.
display different therapy response and survival. e The algorithm developed allowed the prediction of

overall survival and tumor subtype with high
diagnostic accuracy in an independent validation
cohort.
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Background

Pancreatic ductal adenocarcinoma (PDAC) carries amongst
the poorest prognoses of all cancers. Tumors exhibit het-
erogeneity on a genetic, transcriptomic, and proteomic
level, which manifests itself in a complex tissue architecture
including tumor cells, various fibroblast, and immune cell
populations embedded in a poorly vascularized, dense
stroma [1]. Despite its overall dismal prognosis, recent
research has identified specific molecular subtypes with
distinct therapy response and outcome. Amongst these, the
so-called classical phenotype shows improved chemother-
apy response and survival compared to the so-called quasi-
mesenchymal or basal-like subtype underlining the urgent
requirement for advanced techniques for precise pre-
treatment patient stratification [2, 3]. This is crucial for ad-
equate patient management, based on informed decision
processes, clinical trial design, and outcome interpretation.

In heterogeneous tumors such as PDAC, biopsies carry
a risk of tissue undersampling. In contrast, imaging in-
habits a unique niche in precision medicine in that it can
provide volumetric information non-invasively. Radiomics,
the process of derivation of quantitative analytics from
medical imaging data [4], represents a substantial advance
over traditional image analysis workflows. In fact, it lever-
ages data science and machine learning (ML) techniques
to exploit non-intuitive image content and integrate it
with clinical information to create a generalizable model
capable of predicting biological features or the course of
disease [5].

Since PDAC is a relatively rare tumor entity, typically
only treated in specialized interdisciplinary centers, there
is still a paucity of radiomic studies aiming to assess per-
tinent metrics such as patient survival or histopathological
subtypes. Our aim was to apply a standardized, reprodu-
cible radiomic workflow to diffusion-weighted imaging
(DWT)-derived apparent diffusion coefficient (ADC) maps,
pipelined to a ML model capable of predicting overall
survival and histopathological subtypes, trained and inde-
pendently validated on two cohorts of PDAC patients.

Methods

Study design

Data collection, processing, and analysis were approved
by the institutional ethics committee Ethikkommission
der Medizinischen Fakultit der Technischen Universitit
Miinchen, protocol number 180/17S and 5573/12. The
study was designed as a retrospective cohort study with a
prospectively accrued, retrospectively enrolled independ-
ent validation cohort. The study endpoint was defined as
overall survival. The requirement for written consent was
waived for the retrospective cohort whilst written consent
was obtained for the independent validation cohort for
image acquisition and analysis of the imaging data. The
two cohorts were accrued by the department of radiology
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(training cohort) and the clinic for nuclear medicine (inde-
pendent validation cohort) at the same university hospital.
All procedures were carried out in accordance with per-
tinent laws and regulations.

We considered patients with final histopathological
diagnosis of PDAC of the head and body for inclusion in
the study. Patients who did not have a final diagnosis of
PDAC, had undergone treatment such as chemotherapy
or resection prior to enrolment, refused treatment or
study inclusion, died within the first 2 months of follow-
up (to limit bias from postoperative complications), did
not undergo the full imaging protocol, or did not have
technically sufficient imaging available due to motion
artefacts precluding imaging analysis were excluded. For
inclusion in the training cohort, we retrospectively con-
sidered 206 consecutive patients, who presented at our
institution between 2008 and 2013 and underwent
imaging at the department of radiology with a suspected
finding of PDAC. The median time between imaging
and final histopathological diagnosis was 8 days (range
5-11). The follow-up interval was defined as 5 years
post-imaging. Follow-up was handled by the depart-
ments of surgery and internal medicine. After exclu-
sions, a total of 102 patients were included in the study
as the training cohort.

Prospective patients were accrued from 2013 onwards
as part of an effort to evaluate imaging performance and
prognostic value of 3-T magnetic resonance imaging
(MRI). Participants underwent 3-T MRI evaluation for
suspected finding of PDAC. Of 62 consecutive patients
who were considered for inclusion, 30 patients fulfilled
the enrolment criteria and designated as the independ-
ent validation cohort. The median time between imaging
and final histopathological diagnosis was 7 days (range
5-12).

Clinical data was sourced from the clinical information
system. Radiomics data was generated during data ana-
lysis. For exclusion of bias, data analysis was performed in
pesudonomyzed form and handled by separate individuals
(G.K. and S.Z.). Data analysis was performed starting in
June 2018. Patient flowcharts and the complete STROBE
(Strengthening the reporting of observational studies in epi-
demiology) [6] checklist can be found in Additional file 1.

Clinical variables

The following clinical data was collected for patients in
the training and independent validation cohorts: age at
diagnosis, sex, p/cTNM, resection status, grading, tumor
volume in millilitres (as supplied in the final histopatho-
logical report), ECOG (Eastern Cooperative Oncology
Group) performance status [7], and chemotherapy regi-
men. Where applicable and available, pre-operative
CA19-9 levels and lymph-node ratios, ie., the ratio of
the number of metastatic lymph nodes to the number of
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dissected lymph nodes, were noted. Overall survival was
defined as the time from diagnosis to death.

Imaging data acquisition

The 102 training cohort patients underwent MRI at 1.5T
(Magnetom Avanto, release VB17, Siemens Healthineers,
Erlangen, Germany). The protocol included the following
sequences: axial and coronal T2-weighted (slice thickness,
5mm); axial T1-weighted (slice thickness, 3 mm) before
contrast injection (2 mL/kg body mass Gd-DTPA (Magne-
vist, Bayer HealthCare, Whippany, USA)) and during the
arterial, pancreatic parenchymal, portal-venous, systemic
venous, and delayed phases (as determined by testing bolus
injection); axial unidirectional DWI at b values of 0, 50,
300, and 600 s/mm? with echo-planar imaging readout and
ADC map calculation. ADC map reconstructions had a
spatial resolution of 5.5 x 5.5 x 5mm (x, y, z) to a 192 x
192 matrix. Furthermore, single-shot T2-weighted mag-
netic resonance cholangiopancreatography was performed
and reconstructed as a radial maximum intensity projection
series. The independent validation cohort included 30 pa-
tients who underwent MRI on a 3-T clinical positron emis-
sion tomography MRI scanner (Biograph mMR, release
VB18, Siemens Healthineers, Erlangen, Germany) at the
nuclear medicine department. The protocol was performed
as above with the following alterations: ADC-map recon-
structions were 5.1 x 5.1 x 5.1 mm (%, y, z) to a 192 x 192
matrix; furthermore, an axial spectral adiabatic inversion
recovery fat-suppressed post-contrast sequence at 5mm
and a whole-body positron emission tomography scan after
application of '®F-fluorodeoxyglucose were included. The
imaging protocols used and the technical hardware specifi-
cations of the MRI machines remained unaltered during
the data acquisition period. Sequence parameters can be
found in Table 1.

Data segmentation

Pseudonomyzed datasets were exported from the hospital
picture archiving system onto a radiological workstation and
segmentation was performed under standardized lighting
conditions by consensus reading of two experienced ob-
servers (G.K. and S.Z.) and quality-controlled by an abdom-
inal radiologist with more than 10 years of experience in
pancreatic MRI (RB segmentation was performed manually
on the b = 600 s/mm? images and transferred to the ADC
maps). An exemplary case is shown in Fig. 1. All sequences
were available to observers for anatomical correlation.

Inferential statistical modelling

For assessing potential clinical confounding parameters
introducing bias to the survival prediction, survival time
was modelled in both cohorts using a multivariate Cox
proportional hazards model. 95% confidence intervals
were calculated by bootstrap resampling. The distributions
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of clinical variables were compared between groups using
Fisher’s exact test. For subsequent ML modelling, the two
cohorts were dichotomized by median overall survival to
yield two sub-cohorts of equal size. Receiver operator
characteristic (ROC) thresholds were evaluated with the
Kolmogorov-Smirnov statistics. Biostatistical modelling
was performed in SPSS version 25 (IBM, Armonk, USA).
For all inferential statistical procedures, a p value lower
than 0.05 was considered significant.

Image postprocessing, radiomic feature extraction, and
ML modelling

All steps of image postprocessing, feature extraction, fea-
ture preprocessing, feature engineering, and ML modelling
are detailed in the Additional file 1. In brief, radiomic fea-
tures were derived after intensity discretization to 32 bins
using PyRadiomics version 2.1 [8] yielding a total of 1.688
features 19 first-order statistics, 16 three-dimensional
shape-based, 10 two-dimensional shape-based, 24 gray-
level co-occurrence matrix, 16 gray-level run-length
matrix, 16 gray-level size zone matrix, 5 neighbouring gray
tone difference matrix, and 14 gray-level dependence
matrix features as well as Laplacian of Gaussian-filtered,
wavelet-decomposition-based (using the coiflet 1 function),
square, exponential, gradient, square-root, logarithm, and
local binary-pattern filtered versions of these features.
Feature preprocessing was applied to eliminate non-
reproducible and unstable features, leading to the exclusion
of 1184 features as detailed in Additional file 1, section 2
(Feature preprocessing) and previously described in [8]. In
brief, features with segmentation-resegmentation instabil-
ity, features unstable in reference tissues between the two
MRI systems, and features yielding constant, nil, or missing
values were removed. In total, 504 features were retained.
Feature values were normalized to the (0,1) interval. A ran-
dom forest [9] classifier was fit in a supervised fashion with
survival above versus below median serving as label to the
training cohort radiomic features. Hyperparameter tuning
and algorithm development were performed by tenfold
nested cross-validation on the training set with an internal
loop used for automated hyperparameter optimization by
randomized grid searching and the independent loop used
for algorithm validation. Feature importance was assessed
by the inbuilt feature importance metrics of the algorithm
based on the decrease of node Gini impurity (a metric of
misclassification rate and thus of the quality of the split at
each decision tree node, compare Section 9.2.3, Classifica-
tion Trees as explained by Hastie et al [10] and by recursive
feature elimination. The algorithm was then tested for pre-
dictive sensitivity, specificity, and ROC area under the
curve (ROC-AUC) in an independent validation cohort by
using Fisher’s exact test on the contingency table of the
correctly and incorrectly classified cases. To assess the
prognostic significance of large-area low gray-level
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Table 1 Acquisition parameters for the training and independent validation cohorts

Training cohort Independent validation cohort
System Siemens Magnetom Avanto Siemens Biograph mMR
Software version VB17 VB18
Anatomic sequences Axial and coronal T2-weighted Axial and coronal T2-weighted
HASTE, 5-mm thickness HASTE, 5-mm thickness
Axial T1-weighted VIBE, 3-mm Axial T1-weighted VIBE, 3-mm
thickness thickness
Dynamic study Axial T1-weighted SPAIR Axial T1-weighted T1 SPAIR
DWI acquisition Axial low-resolution EPI, b = 0, Axial low-resolution EPI, b = 0,
50, 300, 600 s/mm? 50, 300, 600 s/mm?
ADC fit Linear, b = 50, 300, 600 Linear b = 50, 300, 600
Acquisition voxel size (x, ¥, 2) 55x% 55X 55mm 51 %51 Xx51mm
ADC reconstruction matrix 192 x 192 192 x 192
ADC field of view 360 x 360 360 x 360

ADC Apparent diffusion coefficient, DWI Diffusion-weighted imaging, HASTE Half-Fourier acquisition single-shot turbo spin-echo, SPAIR Spectral attenuated
inversion recovery, VIBE Volume interpolated breath-hold examination

Fig. 1 Exemplary case showing a ductal adenocarcinoma of the pancreatic head on T2-weighted images (a), b = 600 s/mm? (b), the segmentation
image including a three-dimensional rendering (inset) and a region-of interest (T) of the tumor (c), and the apparent diffusion coefficient map (d)

-
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emphasis, the algorithm was refit to the training data
using only this feature and tested on the independent
validation cohort. All analyses were carried out using
the Python programming language.

Histopathological workup of tumor samples
Histopathological staining and immunohistochemical
workup were performed as described by Muckenhuber
et al. [11]. In brief, staining for the markers HNFla and
KRT81 was carried out and tumors categorized into three
subtypes: classical, exocrine, and quasi-mesenchymal.
Tumors not positive for either marker were designated as
unclassifiable. Classical, exocrine, and unclassifiable tumors
are onwards referred to as “non-quasi-mesenchymal”.

Results

The distribution of clinical parameters did not differ
significantly between the training and the independent
validation cohorts. Amongst the clinical parameters, the
choice of chemotherapy regimen (gemcitabine versus
Folfirinox) was significantly associated with overall sur-
vival in the training cohort but not in the testing cohort,
and the percentage of patients receiving each regimen
was identical (with ~70% of patients receiving gemcita-
bine in each cohort (p = 1.000, Fisher’s exact test). Meta-
static status at baseline was significantly associated with
diminished survival in both cohorts and was also identi-
cally distributed (~25% of patients, p = 0.812, Fisher’s
exact test) in both cohorts.
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Using cross-validation for algorithm assessment on the
training set, the model achieved a sensitivity of 88 + 13%
(mean + standard deviation), a specificity of 88 + 10%,
and a ROC-AUC of 93 + 7% (p < 0.001, Fisher’s exact
test) over the ten cross-validation folds. On the unseen
data of the independent validation set, the random forest
algorithm achieved a sensitivity of 86.7%, a specificity of
80.0%, a positive predictive value of 81.2%, and a nega-
tive predictive value of 85.7%. The area under the ROC
curve calculated on the independent validation cohort
data was 0.90 (Fig. 2). Results of model evaluation (gain
curves and training curves), feature importance metrics,
and results from recursive feature elimination as well as
Kaplan-Meier modelling of large-area low gray-level em-
phasis as a singular predictive feature and the results of
multivariate Cox analysis and cross-tabulations can be
found in Additional file 1.

Furthermore, the algorithm predictions enabled sig-
nificant stratification of above- versus below-median
overall survival in the independent validation cohort (p
< 0.001, log-rank test, predicted median survival for the
below-median 17.0 months versus 31.3 months for the
above-median group) with the resulting predicted sur-
vival curves showing near-perfect overlap with the actual
survival times of the patients (Fig. 3).

The histopathologic subtype of the tumor samples could
be determined for 21 of the 30 patients in the independent
validation cohort. The quasi-mesenchymal histopathological
subtype was greatly overrepresented in the patient collective
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Fig. 2 Receiver operator characteristic curve of model performance of the ML algorithm for the independent validation cohort. The classification
threshold was 0.5, resulting in an area under the curve of 0.9 (cross) (n = 30 patients)
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Fig. 3 Kaplan-Meier curves showing the predicted survival (blue and green curves) and the true survival (dotted curves) for patients in the
independent validation cohort. Log-rank test between predicted survival curves: p < 0.001 (n = 30 patients)
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predicted by the algorithm to experience below-median
survival with 8 out of 9 patients having quasi-mesenchymal
subtype tumors. The inverse also held true, with 11 out of
12 patients predicted by the algorithm to experience above-
median survival having non-quasi-mesenchymal subtype
tumors (p < 0.001, Fisher’s exact test, Table 2).

Feature importance evaluation based on node Gini im-
purity decrease and recursive feature elimination yielded
eight highly important features, seven of them associated
with image heterogeneity and only one associated with
the proportion of large zones with low gray values
within the image [12, 13] (Fig. 4).

Discussion
In this work, we present an independently validated ML
algorithm, which enables the prediction of overall survival
and shows strong association with histopathologically
defined molecular subtypes recently identified in PDAC
from preoperative DWI. Several of the most important
imaging features belong to a class of heterogeneity-related
features, offering explainable insights into the algorithm.
The potential of radiomics in non-invasive prediction of
clinically relevant parameters, such as response to a spe-
cific therapy or expected overall survival, has been shown
in recent literature: For example, computed tomography-
derived radiomic signatures were shown to enable

prediction of local disease control and overall survival in
PDAC [14, 15] or tumor grading in pancreatic neuroendo-
crine tumors [16]. The large-scale implementation of such
tools thus has the potential to become a game changer in
medical image interpretation and individualized patient
care.

Post-mortem analyses of terminal stage PDAC speci-
mens have shown higher tumor cellularity compared to
resectable PDAC specimens, which likely represent earlier
tumor development stages [17]. In line with this observa-
tion, we previously demonstrated that higher regional
tumor cellularity identified in PDAC resection specimens
was associated with a significantly worse overall survival
and that the pre-operative DWI-derived ADC parameter
could serve as a non-invasive marker thereof [18, 19]. Up-
holding these findings, the current analysis identified the
radiomic feature large-area low gray-level emphasis, repre-
sentative of cohesive zones exhibiting low ADC values, as
one of the eight most important features for survival clas-
sification. Using only this single feature to train the model
and predict the survival in the independent validation
cohort did, however, not yield statistical significance, with
survival curves crossing at early and late time points and
only visual separation present at the time interval between
15 and 30 months (see Kaplan-Meier plot and associated
metrics in Additional file 1).

Table 2 Overlap between predicted survival groups and histopathological subtypes. The quasi-mesenchymal subtype was highly
overrepresented in the group with predicted below-median survival, the non-quasi-mesenchymal subtypes in the group with
predicted above-median survival (n = 30 patients, p < 0.001, Fisher's exact test)

Quasi-mesenchymal subtype

Non-quasi-mesenchymal subtype

1/12 (9%)
8/9 (89%)

Predicted survival > median

Predicted survival £ median

11/12 (91%)
1/9 (11%)




Kaissis et al. European Radiology Experimental (2019) 3:41

Page 7 of 9

Relative Feature Importances

Wavelet(LLH)
GLCM Difference Variance

Exponential Filter
GLSZM Zone Entropy

Wavelet (LHL)
GLCM Cluster Tendency

Wavelet (LHH)
First Order Entropy

Wavelet(HLH)
GLDM Dependence
Non Uniformity Normalized

Square Filter
GLSZM Large Area
Low Gray Level Emphasis

Unfiltered
GLRLM Run Length
Non Uniformity

Wavelet(HHH)
NGTDM Busyness

0.0 0.2

0.4
Fig. 4 Bar plot of the eight most important features for overall model performance as determined by the random forest model by assessment of
Gini impurity decrease and recursive feature elimination. Feature importance has been normalized to the most important feature. The features, in
order of descending importance are as follows: (1) gray-level co-occurrence matrix difference variance, (2) gray-level zone size matrix zone
entropy, (3) gray-level co-occurrence matrix cluster tendency, (4) first-order entropy, (5) gray-level difference method dependence non-uniformity
normalized, (6) gray-level zone size matrix large area low gray-level emphasis, (7) gray-level run-length matrix run-length non-uniformity, and (8)
neighbourhood gray tone difference matrix busyness. Of note, features 1-5 are associated with image heterogeneity and only one (6) associated
with the proportion of large zones with low gray values within the image
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Several of the features ranked highly by our model (gray-
level co-occurrence matrix difference variance, entropy,
non-uniformity, busyness) represent the local heterogen-
eity of the image. Entropy-related and cluster tendency
features were described in the very recent publication by
Khalvati et al. [15] as predictive of overall survival in
PDAC. Entropy has furthermore been found to represent a
highly reproducible and consistent imaging feature in
several tumor entities and across modalities [20]. The
discovery of such reproducible parameters is a key part of
the radiomic process, and it is encouraging to see the same
radiomic markers emerge not only across pancreatic
cancer studies but also in other tumor entities and across

different MRI systems and field strengths, supporting
assumptions of overarching ontologies such as tumor
heterogeneity and paralleling the notions of pathway—as
opposed to tissue-specific therapy approaches [21].

Until proven thoroughly in large prospective trials, the
inclusion of ML-derived predictions in a clinical decision
process is ethically unjustified. In the future, ML-derived
information could be introduced into the clinical work-
up of PDAC patients, e.g., by back-projection of relevant
radiomic features into the image space as it has been
demonstrated for prostate cancer [22] and shown in do-
mains outside medical imaging for deep convolutional
neural networks [23]. Such visualizations could aid model
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explainability or offer guidance for invasive tumor
sampling in PDAC. The introduction of ML as a clinical
decision support tool would also profit from the ability of
ML algorithms to predict molecular signatures such as
KRAS amplification status [24] that may then help stratify
patients in clinical routine. Such radiogenomic approaches
could complement histomorphology-derived tumor sub-
type prediction demonstrated here and advance the role
of radiomics in precision medicine.

We selected the random forest model over the fre-
quently used linear models such as logistic regression
for its capability of modelling both linear and non-
linear relationships between features and outcomes,
robustness to overfitting by design, and inbuilt in-
sights into feature importance aiding model parsi-
mony and explainability. Random forests have also
been shown to yield excellent results in previously
published radiomic studies [25].

As part of any radiomic study, feature preprocessing
and stability checking is required to obtain reproducible
results, resulting in the majority of derived features being
discarded before modelling begins [26]. These discarded
features are therefore rendered useless for the modelling
process. To obtain more usable features, standardized
acquisition and feature extraction is necessary. Recent
initiatives aim to homogenise acquisition protocols be-
tween sites to enable further sequences to be included in
analyses [27]. We adhered to (and strongly support) the
standards set by the Image biomarker standardization ini-
tiative and implemented by PyRadiomics [8, 13], which
provide a robust post-processing platform entirely based
on open-source tools, thus laying the foundation for open
and reproducible radiomic science.

Our work is a proof of concept contribution to the fast-
developing field of ML in medical imaging. Notable limita-
tions include training cohort size, due to which the model
could not reach its full potential performance (see the
training curve in Additional file 1) and the consensus seg-
mentation approach, which we partially mitigated by
excluding features unstable to repeated segmentation in a
subcohort of patients. However, Dice-Sgrensen overlap
scores were not calculated, so no direct data about inter-
reader variability is available for the entire cohort, which
may limit generalizability. The age of the imaging material
in the retrospective training cohort also impacted results
with several patients being excluded due to technical image
quality. The quality of MRI acquisitions has since consider-
ably improved, and our results could benefit from the appli-
cation of state-of-the art abdominal imaging including high
resolution protocols, such as reduced field-of-view DWI
[28-30]. We eliminated all features that were classified un-
stable between the two MRI systems, and recent research
has provided evidence that the quantitative nature of ADC
maps results in large numbers of stable features in different
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tumor entities and across different field strengths and MRI
systems [31]. In agreement with these findings, our
algorithm maintained high classification performance on
independent validation data from a different MRI system,
with sensitivity and specificity figures on average 1 to 8%
lower than cross-validated performance and with a ROC-
AUC reduced by about 3%, indicating that thorough pre-
processing, feature engineering and applications using
quantitative imaging data can facilitate the deployment of
radiomic analyses across systems and institutions.

Further studies on larger cohorts are required to conclu-
sively resolve the impact of switching MRI systems on al-
gorithm generalizability and performance. Lastly, although
rigorously quality-controlled, our approach still relies on
manual tumor segmentation, since recent fully automated
segmentation algorithms fail to match human observers in
pancreatic tumors [32]. We believe that future work will
result in optimized algorithms that enable a higher level of
automation—and thus standardization—of this task.

In conclusion, we showed the promise of ML-based
radiomic analyses in PDAC. We encourage the validation
of the identified radiomic parameters in larger, prospect-
ively accrued cohorts to lay the foundation for therapeutic
interventions based on quantitative imaging biomarkers.

Additional file

[Additional file 1: Supplementary material. (DOCX 403 kb) ]
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