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Abstract

Background: Structured reports have been shown to improve communication between radiologists and providers.
However, some radiologists are concerned about resultant decreased workflow efficiency. We tested a machine
learning-based algorithm designed to convert unstructured computed tomography pulmonary angiography (CTPA)
reports into structured reports.

Methods: A self-supervised convolutional neural network-based algorithm was trained on a dataset of 475 manually
structured CTPA reports. Labels for individual statements included “pulmonary arteries,” “lungs and airways,” “pleura,”
“mediastinum and lymph nodes,” “cardiovascular,” “soft tissues and bones,” “upper abdomen,” and “lines/tubes.” The
algorithm was applied to a test set of 400 unstructured CTPA reports, generating a predicted label for each statement,
which was evaluated by two independent observers. Per-statement accuracy was calculated based on strict criteria
(algorithm label counted as correct if the statement unequivocally contained content only related to that particular
label) and a modified criteria, accounting for problematic statements, including typographical errors, statements that
did not fit well into the classification scheme, statements containing content for multiple labels, etc.

Results: Of the 4,157 statements, 3,806 (91.6%) and 3,986 (95.9%) were correctly labeled by the algorithm using strict
and modified criteria, respectively, while 274 (6.6%) were problematic for the manual observers to label, the majority of
which (n = 173) were due to more than one section being included in one statement.

Conclusion: This algorithm showed high accuracy in converting free-text findings into structured reports, which could
improve communication between radiologists and clinicians without loss of productivity and provide more structured
data for research/data mining applications.

Keywords: Artificial intelligence, Machine learning, Natural language processing, Structured reporting, Tomography (x-
ray, computed)

Key points

� An artificial intelligence-based algorithm can be
used to label statements from unstructured
radiology reports, helping facilitate conversion into
structured reports.

� Many statements were difficult to classify by both
the manual observers and the algorithm,
highlighting the limitations of free-form reporting.

� Based on the prediction probability for each
statement, the algorithm could have utility in
identifying ambiguous or otherwise problematic
language in reports.

Background
Clinical medical imaging involves a number of distinct
components: proper image acquisition, reconstruction,
interpretation, and reporting of findings. Traditionally,
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the body of the radiology report (i.e., the “Findings” sec-
tion) consists of unstructured, free-form dictations.
However, this style has been found to result in ambigu-
ous and difficult to interpret reports [1, 2], whereas
more standardized reports result in improved accuracy
and consistency of the radiologist [3, 4] along with im-
proved satisfaction [2, 5], understanding [6], and recall
[7] by the referring clinician. Unfortunately, widespread
adaption of structured reports has met some resistance
due to perceived compromises in workflow efficiency,
potential oversimplification of findings, and concerns
over professional billing [8–10].
While changes in traditionalist attitudes can be slow,

advances in various artificial intelligence (AI) applica-
tions have been recently accelerating. Techniques com-
bining natural language processing (NLP) and machine
learning (ML) have been shown to have high accuracy in
extracting content from unstructured radiology reports
[11, 12], but there is a paucity of data applying these
techniques to report restructuring. Accordingly, we
sought to develop and validate a ML algorithm that is
capable of consuming free-form computed tomography
pulmonary angiography (CTPA) reports and generating
structured reports. As a secondary goal, we sought to ex-
plore the utility of this algorithm in identifying problems
with statements from the original reports.

Methods
The Institutional Review Board approved and waived
consent for this retrospective study. Our department
moved from completely unstructured reporting of find-
ings to the utilization of simple section headings in Au-
gust 2016. Content within the unstructured reports was
included under a general “Findings” section without any
additional labeling; radiologists reported information in
a traditional prose format (sentences organized into par-
agraphs, with no section headings). The structured re-
ports included section headings within the findings
section. Examples of each style are presented in Fig. 1.

Algorithm design
A deep learning-based NLP framework was designed to
automatically convert free-form reports into structured
reports, as shown in Fig. 2.
The training data consisted of 475 structured CTPA

reports (with section headings for all the findings) gener-
ated from November 2016 through April 2017. In the
training data, each sentence was already annotated by a
clinical expert since it was associated with a section
heading in the structured report. The following sections
headings were present: Pulmonary arteries; Lungs and
airways; Pleura; Mediastinum and lymph nodes; Cardio-
vascular; Soft tissues and bones; Upper abdomen, and

Lines/tubes. These annotated sentences were used as
training samples.
To prepare the data for training, a pre-processing step

was applied to each report, whereby each report was
automatically split into sentences and words.
A convolutional neural network (CNN)-based text

classification algorithm (Fig. 3), which operated on each
sentence independently, was trained on the labeled data.
The model input and output were a sentence and its
corresponding section label, respectively. The word em-
bedding layer in the network architecture converted
each word into its vector representation. Due to limited
data size, a pre-trained word embedding was used in this
work. A “softmax” function in the last layer of the neural
network (Fig. 3) provided probabilities for each label in
the multi-class classification problem. The class with the
highest probability was chosen as the predicted result.

Algorithm validation
The validation data consisted of 400 unstructured CTPA
reports (without section headings) generated from No-
vember 2015 through April 2016, with ground truth cre-
ated by two human observers.
For the validation, each unstructured report was ap-

plied to the same pre-processing (sentence and word
tokenization) as described above. Each sentence to be
classified was tokenized with words, converted into word
vectors, and fed to the pre-trained CNN model de-
scribed above. The pre-trained model assigned a label to
each input sentence. A structured report was generated
when all sentences were labeled. A confidence score was
generated by the algorithm for each prediction, ranging
from 0 (least confident) to 1 (most confident).
All statements from the 400 unstructured test reports

were classified by the ML algorithm into one of the eight
sections as described above. For generating the ground
truth, two independent human observers (one radiology
resident and one radiology attending) manually placed
each statement into one of the eight categories, if pos-
sible. Problematic statements, i.e., those that did not fit
well into one and only one of the eight predetermined
labels, were identified and coded into one of seven gen-
eral types of problems:

1. More than one section included in a single
statement, for example, “There is no pleural or
pericardial disease,” which applies to both the
Pleura and Cardiovascular labels;

2. Findings are acceptable and variably placed in
different sections, for example, hiatal hernias are
reported in the Upper abdomen section by some in
our practice and in the Mediastinum and lymph
nodes section by others.
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3. Statements related to technique or artifact, for
example, “Study quality is severely degraded by
patient motion artifact”;

4. Complicated cases that by necessity involve
multiple sections, such as the following description
of a lung cancer case: “5.1-cm mass in the right
middle lobe with direct invasion of the

mediastinum and encasement and narrowing of the
right middle lobar pulmonary arteries,” which
addresses components of Pulmonary arteries, Lungs
and airways, and Mediastinum and lymph nodes;

5. Rare findings that are not well classified, for
example, “Evidence of prior left hemidiaphragmatic
repair”;

Fig. 2 Overview of the proposed deep learning framework for converting free-form unstructured reports into structured reports with section
headings. Each input report is split into sentences and each sentence is classified by the pre-trained convolution neural network algorithm into
one of the classes (section headings). NLP, Natural language processing

Fig. 1 Examples of unstructured (a, used for testing) and structured (b, used for training) radiology reports
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6. Typographical/dictation errors or nonsensical
statements, for example, “Neuropathy material
visualized within the midthoracic esophagus”;

7. Other.

The human observers had discretion on how to
label problematic statements. Some received a single
label (e.g., image quality statements applying predom-
inantly to the pulmonary arteries were given a label
of Pulmonary arteries), some received multiple labels
(e.g., “There are no suspicious pulmonary nodules or
mediastinal lymphadenopathy” would be given labels
of Lungs and airways and Mediastinum and lymph
nodes), and some received no label at all (e.g., dicta-
tion errors/nonsensical statements: “Are no nodular”).
Discrepancies between observers were resolved by
consensus.
The observers then evaluated the accuracy of the pre-

dicted labels compared to the manual labeling, using
two sets of criteria: “Strict” and “Modified.” The ML la-
bels were considered correct by strict criteria if and only
if they exactly matched the same label applied by the hu-
man observers. Accordingly, problematic statements
could be considered correct by strict criteria if and only
if the human observers placed a single label on the prob-
lematic statement and this matched the algorithmically
derived label. In contrast, the ML labels were considered
correct by modified criteria if they matched one of the
labels applied by the human observers. For example,

“There is no pleural or pericardial disease” would be
coded as Pleura and Cardiovascular by the human
observers. Either of these labels if predicted by the ML
algorithm would be considered correct by modified
criteria, but neither by strict criteria.

Statistical analysis
All statistical analyses were performed using commer-
cially available statistics software (SPSS v25, IBM Corp.,
Armonk, NY). Descriptive statistics utilized mean ±
standard deviation or median with interquartile ranges.

Results
Four-hundred reports were included in the test set,
encompassing a total of 4,157 statements (10.4 ± 2.6
statements per report, mean ± standard deviation). Of
the 4,157 statements, 3,806 (91.6%) were correctly la-
beled by the algorithm using strict criteria, while 3,986
(95.9%) were correctly labeled using modified criteria.
The accuracy of individual labels using strict and modi-
fied criteria is shown in Table 1.

Problem statements
Of the 4,157 statements, 274 (6.6%) were problematic
for the manual observers to label, of which 180 were
misclassified using strict criteria. The causes for the
problems were more than one section being included in
one statement (n = 173, 4.2%), findings acceptable in
more than one section (n = 38, 0.9%), statements related

Fig. 3 Text classification model with convolution neural network net. Conv, Convolution; NLP, Natural language processing
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to technique or artifact (n = 28, 0.7%), typographical/dic-
tation errors or nonsensical statements (n = 20, 0.5%),
rare findings that are not well-classified into the prede-
termined schema (n = 11, 0.3%), and complicated cases
that by necessity involve multiple sections for a single
statement (n = 3, 0.1%). One statement referred to a
prior examination and was considered problematic, sub-
category Other. Problematic statements by label are
shown in Table 1.

Prediction probability
The algorithm applied a prediction probability of 1.0 to
the majority of statements (3,262/4,157, 78.5%);

accordingly, the median and interquartile ranges were all
1.0 (1.0–1.0), whereas the total range of prediction prob-
ability for all statements was 0.146–1.000. The accuracy
of the algorithm (using both strict and modified criteria)
increased with increasing prediction probability (Table
2; Fig. 4). Of the 274 problem statements, 180 (65.7%)
had a prediction probability < 1, compared to 71/3,883
(18.4%) statements without classification problems.

Discussion
The current study demonstrated the feasibility of using
an AI algorithm based on NLP and ML techniques to
convert unstructured free-form text from the findings
section of radiology reports into separate subheadings

Table 1 Accuracy of individual predicted labels

Predicted label Number of statements Accuracy by strict criteria Accuracy by modified criteria Problematic statements

Cardiovascular 840 805/840 (95.8%) 815/840 (97.0%) 23/840 (2.7%)

Lines/tubes 118 111/118 (94.1%) 113/118 (95.8%) 2/118 (1.7%)

Lungs and airways 821 717/821 (87.3%) 768/821 (93.5%) 68/821 (8.3%)

Mediastinum and lymph nodes 447 402/447 (89.9%) 444/447 (99.3%) 48/447 (10.7%)

Pleura 371 307/371 (82.7%) 369/371 (99.5%) 62/371 (16.8%)

Pulmonary arteries 502 485/502 (96.6%) 487/502 (97.0%) 21/502 (4.2%)

Soft tissues and bones 583 553/583 (94.8%) 556/583 (95.4%) 16/583 (2.7%)

Upper abdomen 475 426/475 (89.7%) 434/475 (91.4%) 34/475 (7.2%)

Total 4,157 3,806/4,157 (91.6%) 3,986/4,157 (95.9%) 274/4,157 (6.6%)

Table 2 Accuracy stratified by prediction probability

Prediction probability threshold Number of statements Accuracy by strict criteria Accuracy by modified criteria

0.1 4,157 3806/4157 (91.6%) 3986/4157 (95.9%)

0.15 4,155 3806/4155 (91.6%) 3986/4155 (95.9%)

0.2 4,154 3806/4154 (91.6%) 3986/4154 (96.0%)

0.25 4,154 3806/4154 (91.6%) 3986/4154 (96.0%)

0.3 4,151 3805/4151 (91.7%) 3985/4151 (96.0%)

0.35 4,143 3802/4143, (91.8%) 3982/4143 (96.1%)

0.4 4,127 3794/4127 (91.9%) 3974/4127 (96.3%)

0.45 4,112 3786/4112 (92.1%) 3966/4112 (96.4%)

0.5 4,094 3779/4094 (92.3%) 3958/4094 (96.7%)

0.55 4,069 3771/4069 (92.7%) 3945/4069 (97.0%)

0.6 4,034 3761/4034 (93.2%) 3934/4034 (97.5%)

0.65 4,009 3747/4009 (93.5%) 3920/4009 (97.8%)

0.7 3,961 3711/3961 (93.7%) 3881/3961 (98.0%)

0.75 3,925 3693/3925 (94.1%) 3854/3925 (98.2%)

0.8 3,886 3667/3886 (94.4%) 3824/3886 (98.4%)

0.85 3,858 3651/3858 (94.6%) 3806/3858 (98.7%)

0.9 3,810 3623/3810 (95.1%) 3773/3810 (99.0%)

0.95 3,715 3546/3715 (95.5%) 3689/3715 (99.3%)

1.0 3,262 3187/3262 (97.8%) 3259/3262 (99.9%)
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with high accuracy (92–96%). The results of the study
also highlighted a well-known problem in radiology
reporting: problematic statements, some of which pose
difficulties to a structuring scheme by necessity (e.g.,
complicated cases) and some by error (e.g., dictation
errors). While not designed for this purpose, the predic-
tion probability feature of the algorithm may have an ap-
plication in identifying such statements.
Clear, concise, accurate, and reproducible communica-

tion is a universally accepted requirement in the clinical
practice of medical imaging [13], and both expert opin-
ion and formal studies have shown that “structured
reporting” in its various forms can improve communica-
tion between radiologists and referring providers [2, 3, 7,
13], albeit at the perceived cost of lower productivity
[10, 13]. The current study demonstrated that new AI
applications might be feasible in combining advantages
of both free-form reporting (namely, increased radiolo-
gist productivity) and structured reporting (namely, im-
proved communication with providers). In addition to
immediate clinical benefits, increased structuring could
have utility for data mining applications or when layer-
ing additional feature extraction on the report, and the
algorithm could be retrospectively applied to legacy re-
ports if indicated. For example, identification of the
presence of pulmonary embolism via NLP and ML
should be made easier if an algorithm only has to search
a single section of a report (Pulmonary arteries) rather
than the entire text.
Several different computer algorithms have been ap-

plied to radiology reporting in the past [11, 12, 14–16].

Studies have used a variety of different methods, i.e.,
combinations of ML, active learning, and NLP. These
studies have had varying goals, most commonly identifi-
cation and highlighting specific findings, such as critical
or abnormal findings [11, 14, 16] and presence of cancer
[12], with wide ranges in diagnostic accuracies (range
82–99%) for the given task. Studies that are directly
comparable to ours, i.e., conversion of free-text reports
to semi-structured reports, are sparse, but early feasibil-
ity studies have been promising [15].
Nearly 7% of the statements from the 400 test reports

proved problematic for the manual observers to label. This
highlights intrinsic problems in radiology reporting in
general as well as some of the arguments against rigid re-
port structuring. The majority of the problematic state-
ments would not be inappropriate in a free-text report per
se, i.e., two sections combined into one statement or find-
ings that could reasonably go into one of several headings,
but rather became inconclusive when forced into one par-
ticular section. This could be reasonably addressed with
either a change in dictation culture or more sophisticated
rules layered onto the ML algorithm to address these spe-
cific situations. However, there were also a minority
(0.5%) of statements that were nonsensical such that their
meaning could not be determined enough for manual la-
beling, presumably from dictation errors or typos. Of
these 20, only 3 (15%) received a prediction probability of
1 (meaning that the algorithm believed labeling was cor-
rect). Of all of the problematic statements, 66% had a pre-
diction probability of less than 1, compared to only 18% of
the nonproblematic statements. We believe that with

Fig. 4 Accuracy of the algorithm in correctly labeling statements by strict and modified criteria at various prediction probability thresholds
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modification, this feature of the algorithm could be used
to identify statements within a report that should be reex-
amined for clarity. Of course, the algorithm was not de-
signed with this feature in mind and the study was not
designed to test such a feature, but we believe it warrants
further examination.
This study is not without limitations, some of which

highlight intrinsic challenges of ML technology. While
over 4,000 individual statements were used for both train-
ing and testing, many times more will be necessary to
optimize the potential of current ML algorithms, particu-
larly in the accurate labeling of rare findings or uncom-
mon statements. Both the training and testing reports
were generated by approximately 40 separate radiologists,
but all from the same department, and therefore both het-
erogeneity in individual reporting style and specific insti-
tutional nuances are incorporated into the algorithm.
While it is likely a positive feature to have variability when
training the algorithm, this did decrease labeling accuracy
when applying our “strict” criteria. Conversely, institu-
tional colloquialism could limit the generalizability of al-
gorithms trained in a single radiology department. Our
statement segmentation was based on individual sen-
tences, which sometimes lacked the nuance available and
necessary to convey information with prose-style dicta-
tions. It would potentially be more useful to look at word
groupings rather than individual sentences when segment-
ing reports. Along the same lines, simply rearranging the
order of statements from a prose-based report into differ-
ent subsections might decrease the readability of the over-
all report. We would expect dictation styles to change
with the implementation of this sort of algorithm (less
contiguous prose and more individual statements). We
only trained and tested our algorithm in English. Applying
a “language translation algorithm” to non-English reports
to convert to English or using multilingual word embed-
ding might allow other languages to be tested and used.
Finally, we must acknowledge that the definition of “struc-
tured reporting” varies. We acknowledge that this algo-
rithm performed only the most basic of structuring—
applying section labels. Other schemata also incorporate
lexicons (e.g., Breast Imaging Reporting and Data System,
BI-RADS) in addition to section headings [17]; applying
these more advanced techniques should be examined in
future applications.
In conclusion, we demonstrated that an AI algorithm

has high accuracy in converting free-text radiology find-
ings into structured reports. This could improve com-
munication between radiologists and referring clinicians
without loss of productivity and provide more structured
data for research/data mining applications. In addition,
the prediction probability feature of the algorithm war-
rants further exploration as a potential marker of am-
biguous statements.
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