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Performance of machine learning software
to classify breast lesions using BI-RADS
radiomic features on ultrasound images
Eduardo Fleury1,2* and Karem Marcomini3

Abstract

Background: The purpose of this work was to evaluate computable Breast Imaging Reporting and Data System
(BI-RADS) radiomic features to classify breast masses on ultrasound B-mode images.

Methods: The database consisted of 206 consecutive lesions (144 benign and 62 malignant) proved by percutaneous
biopsy in a prospective study approved by the local ethical committee. A radiologist manually delineated the contour
of the lesions on greyscale images. We extracted the main ten radiomic features based on the BI-RADS lexicon and
classified the lesions as benign or malignant using a bottom-up approach for five machine learning (ML) methods:
multilayer perceptron (MLP), decision tree (DT), linear discriminant analysis (LDA), random forest (RF), and support
vector machine (SVM). We performed a 10-fold cross validation for training and testing of all classifiers. Receiver
operating characteristic (ROC) analysis was used for providing the area under the curve with 95% confidence
intervals (CI).

Results: The classifier with the highest AUC at ROC analysis was SVM (AUC = 0.840, 95% CI 0.6667–0.9762), with
71.4% sensitivity (95% CI 0.6479–0.8616) and 76.9% specificity (95% CI 0.6148–0.8228). The best AUC for each
method was 0.744 (95% CI 0.677–0.774) for DT, 0.818 (95% CI 0.6667–0.9444) for LDA, 0.811 (95% CI 0.710–0.892)
for RF, and 0.806 (95% CI 0.677–0.839) for MLP.
Lesion margin and orientation were the optimal features for all the machine learning methods.

Conclusions: ML can aid the distinction between benign and malignant breast lesion on ultrasound images
using quantified BI-RADS descriptors. SVM provided the highest ROC-AUC (0.840).

Keywords: Breast neoplasms, Machine Learning, Neural networks (computer), Support vector machine,
Ultrasonography

Key points

� Five different machine learning classifiers were
utilised to differentiate malignant from benign breast
lesions on B-mode ultrasound images using ten BI-
RADS features. The area under the curve
obtained by machine learning systems ranged from
0.806 to 0.840.

� The best performance was obtained by the support
vector machine system with an area under the curve
of 0.840, 71.4% of sensitivity, and 76.9% of specificity.

� Machine learning systems based on BI-RADS feature
can help in malignant/benign differentiation but
further improvement is needed.

Background
Ultrasound imaging is one of the most effective tools as
an adjunct to mammography to detect and diagnose
breast abnormalities. It is useful to detect and distin-
guish benign from malignant masses with high accuracy,
reducing the number of unnecessary biopsies [1, 2].
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Since 2003, the American College of Radiology devel-
oped the Breast Imaging and Reporting Data System
(BI-RADS) ultrasound lexicon that provides standard ter-
minology to describe the findings in relation with the
probability of malignancy [3, 4]. The dominant sono-
graphic characteristics are described according to five BI-
RADS descriptive categories: shape, orientation, margins,
echo pattern, and posterior acoustic transmission [5, 6].
One of the aims of radiomics is to extract, process,

and classify a number of imaging features in order to de-
termine the phenotypic characteristics of a lesion that
helps to differentiate malignant from benign lesions.
Radiomics can be used for any imaging method, includ-
ing ultrasound scan [7].
Advances in the field of image processing have aided

to improve sensitivity and specificity [8]. Several soft-
ware have been developed to quantify lesion characteris-
tics [9–11] related to shape and texture. Other studies
have tried to quantify the features used by the radiolo-
gists by “translating” the descriptive terms from the
BI-RADS lexicon into computerised features so that
the algorithms can automatically compute these fea-
tures [1, 6, 8]. The authors consider that the main advan-
tage given by these systems using BI-RADS sonographic
characteristics is that the system could be applied on im-
ages provided by different ultrasound equipment [6]. In
this context, machine learning can be broadly defined as
computational methods/models using experience (data) to
improve performance or make accurate predictions.
The purpose of this work was to assess whether BI-

RADS computerised features can improve the diagnosis
by computational decision, using five different machine
learning methods.

Methods
This prospective study was approved by the Research
Ethics Committee of Brazilian Institute for Cancer
Control (IBCC—São Paulo, SP, Brazil) (protocol number
012664/2016) and was registered in the Plataforma
Brazil (protocol number 53543016.2.0000.0072). We ob-
tained informed consent from all included patients and
protected their private information.

The cases were prospectively collected from September
2017 to July 2018 during diagnostic breast exams at the
IBCC. The population consisted of 144 women (43.6 ± 11.1
years, mean ± standard deviation) with 206 solid lesions,
144 being benign and 62 being malignant at percutaneous
core biopsy. The histopathology results of the benign and
benign lesions are listed in Table 1. We used four ultra-
sound systems to acquire the images: Toshiba Nemio 30,
Toshiba Aplio 400 (Toshiba, Tokyo, Japan), Siemens VFX
13-5, and Siemens FV 10-5 (Siemens, Erlangen, Germany),
with 5-10MHz linear transducers. A radiologist with 2
years of experience in breast imaging performed the ultra-
sound exams.

Feature extraction and selection
Five main sonographic mass features are described in the
BI-RADS lexicon fifth edition: shape, orientation, margin,
echo pattern, and posterior acoustic features [12].
We used ten BI-RADS computerised features that were

proposed by Shan et al. [8]: {1} area of difference with
equivalent ellipse (ADEE), {2} lesion orientation, {3} aver-
age of difference vector (AvgDiff), {4} number of peaks on
the distance vector (NumPeaks), {5} average of the dis-
tance vector (AvgDistance), {6} area difference between
the convex hull and tumour (ADCH), {7} echogenicity, {8}
entropy, {9} shadow, and {10} lesion size. These multiple
computerised features are proposed as discussed below.
According to the BI-RADS lexicon, the breast mass

shape can be round, oval, or irregular. Irregular shape is
a sign suggestive of malignancy. We used an equivalent
ellipse with the same second moments as the mass area
and calculated the ADEE, defined as:

ADEE ¼ AE þ AT−AE∩T

AT

where AE is the number of pixels in the equivalent el-
lipse, AT the number of pixels in the tumour region, and
AE ∩ T the number of pixels in the intersection between
the tumour and the ellipse. Figure 1 illustrates the area
difference between the tumour and its equivalent ellipse:

Table 1 Histopathology of the 206 solid lesions at percutaneous core-biopsy

Bening lesions Malignant lesions

Type Number Percentage (%) Type Number Percentage (%)

Fibroadenoma 71 49.3 Ductal carcinoma in situ 1 1.6

Fibocystic changes 48 33.3 Invasive ductal carcinoma GI 9 14.5

Phyllodes tumour 3 2.1 GII 33 53.2

Papylary lesion 3 2.1 GIII 14 22.6

Other$ 19 13.2 Invasive lobular carcinoma 5 8.1

Total 144 100.0 Total 62 100.0
$Steatonecrosis, mastitis, fat tissue
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the more irregular the shape, the greater the area of
difference.
Orientation identifies the direction of the longer lesion

axis. It can be perpendicular to the skin layer, i.e., the le-
sion is taller than wide (a sign of malignancy), or parallel
to the skin layer, i.e., the lesion is wider than tall (a sign
of benignancy). To quantify this feature, we used the fol-
lowing equation:

Orientation ¼ Height
Width

Margin characteristics are an excellent BI-RADS de-
scriptor predictor of malignancy, including several sub-
categories as follows: indistinct, angular, microlobulated,
and spiculated. Indistinct margin is related to no clear
demarcation between a mass and its surrounding tissue.
To compute this feature, we defined the intensity differ-
ence vector drawing the outside and inside contour
along the tumour contour with a 20-pixel width on each
side (Fig. 2, where the yellow lines represent three seg-
ments on which the intensity difference vector is com-
puted; each segment starts from a pixel on the outside
contour and ends up at the closest pixel on the inside
contour). The intensity difference vector (Diff ) is calcu-
lated as follows:

Diff ið Þ ¼ Iout ið Þ
�

−I in jð Þ�

where i is the ith pixel on the outside blue contour and j
is the closest pixel to i on the inside red contour, IoutðiÞ

�
is the average intensity of pixels on the outside half of the

line segment ij, and I inð jÞ
�

is the average intensity of
pixels on the other half of the line segment ij) (see Fig. 2).
The computerised indistinct margin feature can be

represented by the average of vector Diff, that is:

AvgDiff ¼
P

i∈outDiff ið Þ
N

where i is a pixel on the outside contour, and N is the
number of pixels on the outside contour.
The other margin related features (angular, microlobu-

lated, or spiculated) are related to the contour smooth-
ness. The common characteristic of these irregular
shapes is captured by a proposed digital feature. The dis-
tance vector between the tumour contour and its convex
hull is computed by a drawn of the convex hull of the
tumour. The distance to the closest point on the tumour
contour is saved in the distance vector Vconvex:

V convex ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x j
� �2 þ yi−y j

� �2
r

where i is the ith pixel on the convex hull, j is the closest
pixel to i on the tumour contour, and x and y are the co-
ordinates of the pixels.
We extracted three features from the distance vector

to describe the margin: the number of peaks (Num-
Peaks), the average of the distance vector (AvgDistance),
and the area difference between the convex hull tumour
(ADCH). A higher NumPeaks means that the contour is
bumpier; a higher AvgDistance indicates a spiculated
contour; a higher ADCH indicates irregularity in the
contour. Figure 3 shows how the number of peaks on
the distance vector corresponds to the number of valleys
on the tumour contour, which are marked by red stars.
These three digital features are defined as follows:

NumPeaks ¼ Number of local maxima of V convex

AvgDistance ¼ Average of V convex

ADCH ¼ Ac−AT

AT

Fig. 1 Area difference between a breast malignant mass and its
equivalent ellipse Fig. 2 Original contour (white), inside contour (red), and outline

contour (blue) of a lesion
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where Vconvex is the distance vector between the tumour
boundary and the corresponding convex hull, Ac is the
number of pixels within the convex hull, and AT is the
number of pixels within the tumour (see Fig. 3).
Echo pattern, the average intensity of the tumour and

the surrounding tissues provides a reference to describe
the degree of echogenicity and might be captured by the
following index:

Echogenicity ¼ AvgIntensitysurrounding−AvgIntensitytumour

The surrounding region should be a rectangular region
that contains the tumour in its centre and is about twice
the size of the tumour. Shadow areas should be excluded
from the surrounding region to provide an accurate ref-
erence. A positive echogenicity indicates that the tumour

is hyperechoic whereas a negative echogenicity indicates
that the tumour is hypoechoic.
The heterogeneous ultrasound pattern is a combin-

ation of darker and lighter components. The information
obtained from the entropy refers to the probability dis-
tribution of grey values. A low entropy value corre-
sponds to an image with a few information, i.e., has low
variability of intensities values (prevalent homogeneity),
while a high entropy value corresponds to an image con-
taining a lot of information, i.e., different intensities
values (prevalent heterogeneity). The entropy feature is
proposed to describe the degree of heterogeneity:

Entropy ¼ −
X

i

Pi log2Pi

where Pi is the probability that the intensity difference
between two adjacent pixels is equal to i.
Acoustic shadowing is considered worrisome for ma-

lignancy. For measuring the posterior acoustic feature,
we determined a rectangular region below the tumour
(with a size similar to that of the tumour) and compared
its average intensity with that of the tumour. If the dif-
ference is positive, it means no shadow, whereas a nega-
tive difference indicates the presence of shadow.

Shadow ¼ Ipost
�

−I tumour
�

where �Ipost is the average intensity level of the rectangular re-
gion below the tumour and with similar size to the tumour.
Lesion size is not a standard BI-RADS feature [12].

However, for automatic tumour diagnosis, lesion size
can improve the performance of lesions classifiers when
combined with other features. We represented it by the
number of pixels within the tumour contour.
Thus, we calculated ten features related to morphology

and texture tumour based on the BI-RADS lexicon. The

Fig. 3 Convex hull (red contour) of a malignant lesion (white contour),
with peaks on the distance vector. Vconvex are marked by stars

Fig. 4 Example of segmentation of a fibroadenoma. Original (a) and segmented (b) images (to classify the lesions, the segmented image was
along the plane best representing the mass that was used, in this case, the long axis)
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features were calculated starting from the lesion seg-
mentation performed by a single operator with 16 years
of experience in breast imaging (Fig. 4).

Lesions classification
In this study, we applied five machine learning methods
to distinguish between benign and malignant lesions
using the previously described features.
Decision tree (DT) [13] is a decision support tool that

uses a tree-like graph and its possible consequences. It is
a rule-based decision model. This algorithm was imple-
mented in the Weka Package [14]. Random forest (RF)
[15] operates by constructing a multitude of decision
trees during the training phase and outputting the class
that is the overall prediction of the individual trees. This
method can correct the overfitting problem of decision
trees. We used the algorithm included in the WEKA
Package [14]. Artificial neural network (ANN) [16] is a
self-learning method based on examples. It simulates the
nervous system properties and biological learning func-
tions through an adaptive process. It is composed of an
input layer, one or more intermediate (or hidden) layers,
and an output layer [17]. We used the model multilayer
perceptron (MLP), included in the WEKA Package [14]
with a backpropagation algorithm to update the weights.
Linear discriminant analysis (LDA) [18] is used in pat-
tern recognition tasks to find a linear combination to
characterise or separate two or more classes of objects.
It is also related to the analysis of variance. It has
continuous independent variables and a dependent cat-
egorical variable. To implement this method, we used
the “fitcdiscr” function included in MATLAB R20014a
(MathWorks, Natick, USA). Support vector machine
(SVM) [19] is a classification technique that attempts to

find an ideal hyperplane to separate two classes in a
sample. To train this method, we used the “fitcsvm”
function included in MATLAB R20014a (MathWorks,
Natick, USA).
We performed 10-fold cross validation for training

and testing of all classifiers.

Statistical analysis
We evaluated the different combinations of input fea-
tures for each machine learning approach in order to se-
lect the one with the best classification performance. For
this task, each feature was individually evaluated. We se-
lected the one with the best classification performance,
i.e., with the highest value of the area under the curve
(AUC) at the receiver operating characteristic (ROC)
analysis. Then, a new feature was incrementally added to
the one previously selected and the algorithm was
trained again with the new combination. We selected
the combination with the highest AUC. The incremental
addition of features occurred until there was a reduction
in the classifying performance or until all features were
already included. The ROC analysis was performed and
95% confidence intervals for AUCs were obtained using
Med Calc software v16.2 (MedCalc Software, Ostend,
Belgium). Sensitivity and specificity were calculated at
the best cutoff.

Results
Tables 2, 3, 4, 5 and 6 show the feature selection proced-
ure for each machine learning method. To evaluate the
best input vector for each classifier, we measured the
values of sensitivity, specificity, and AUC.

Discussion
Machine learning systems are increasingly proposed for
aiding imaging diagnosis. Studies showed that the double
reading improves the diagnostic performance of breast

Table 2 Performance of different feature combinations using
the decision tree method

Features Sensitivity (%) Specificity (%) Area under the curve

{6} 73.2 69.1 0.652

{6, 1} 71.2 69.2 0.653

{6, 1, 2} 71.9 73.3 0.720

{6, 1, 2, 8} 70.6 75.0 0.744

{1}: area difference with equivalent ellipse; {2}: orientation; {6}: area difference
between the convex hull and tumour; {8}: entropy

Table 3 Performance of different feature combinations using
the multilayer perceptron method

Features Sensitivity (%) Specificity (%) Area under the curve

{5} 67.5 78.7 0.759

{5, 2} 68.4 79.2 0.789

{5, 2, 1} 68.8 84.1 0.799

{5, 2, 1, 3} 66.2 71.7 0.806

{1}: area difference with equivalent ellipse; {2}: orientation; {3}: average of
difference vector; {5}: average of distance vector

Table 4 Performance of different feature combinations using
the random forest method

Features Sensitivity (%) Specificity (%) Area under the curve

{4} 62.2 71.7 0.697

{4, 8} 72.3 74.6 0.760

{4, 8, 5} 72.6 72.6 0.778

{4, 8, 5, 2} 72.7 75.9 0.811

{2}: orientation; {4}: number of peaks on the distance vector (NumPeaks); {5}:
average of distance vector; {8}: entropy

Table 5 Performance of different feature combinations using
the linear discriminant analysis method

Features Sensitivity (%) Specificity (%) Area under the curve

{5} 59.5 87.4 0.770

{5, 2} 76.0 69.8 0.818

{2}: orientation; {5}: average of distance vector
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lesions [20–22]. However, the operational cost of double
reading performed by two radiologists practically precludes
its application outside the organised screening mammog-
raphy programs. Thus, if the second reading would be per-
formed by a computational method, we could improve the
performance of the examiner at a lower cost.
In the past, software performing computer-aided diag-

nosis provided unsatisfactory results. Computers were
trained to classify the lesions as humans do. It was like
trying to teach the computer to think like a human be-
ing. However, while the computer only makes processing
objective data, the human brain utilises abstract senses
related to vision as well as smell, touch, taste, and hear-
ing. With the use of machine learning systems, it is now
possible to make an analogy of the subjective data used
by humans with objective information used by com-
puters. In this way, the computer can classify the lesions
in an analogous way to the human beings.
The entire process basically consists of 4 steps: (1)

image acquisition, (2) data extraction, (3) data process-
ing, and (4) classification.
In the current study, we tried to adapt information ob-

tained through data extraction with the classifications pro-
posed by the BI-RADS lexicon. We assumed that different
learning methods could have different optimal sets of fea-
tures. The experimental results confirmed this hypothesis.
Some features have low differentiation performance

when used separately. However, they can improve the clas-
sifier performance when associated with other features.
The entropy can be given as an example for this situation,

because when it was used individually by the RF classifier,
it yielded the lowest AUC (0.481). On the other hand,
when it was associated with other features, we observed an
improvement in performance, as shown in Table 4.
Including some features in the input vector may make

the classifier more sensitive or more specific, as in the
case of the DT. When the feature orientation was added
to the input vector, the classifier became more specific
than sensitive (see Table 7).
The overall analysis has shown that proposed features

have a higher ability to distinguish between benign and
malignant lesions, especially orientation, NumPeaks, and
AvgDistance, related to orientation and margin. Other
features presented good potential when they were asso-
ciated with the first ones. They are ADEE and entropy,
related to the shape and ultrasound pattern.
We compared the results of the current study with

those obtained by Shan et al. [8]. These authors tested
ten BI-RADS features with the same classifiers used by
us, except LDA. Their results are shown in Table 8. We
can observe a variation of the best optimal set of fea-
tures between both studies. With RF, for example, our
optimal set of features was entirely different compared
to the one selected by Shan et al. [8]. On the other hand,
our optimal set for our ANN/MLP had four of the six
features selected by Shan et al. [8]. These inter-study
variations may be related to the way each specialist
manually delineated the contour or with the image ac-
quisition procedure, since the operator and the equip-
ment were different.
The SVM was the machine learning method reaching

the best performance in both studies, providing an AUC
very close to each other (about 0.84). Other classifiers
showed a slightly larger difference in the AUC. There-
fore, we can consider that there was no negative influ-
ence on the use of images from different equipment to
perform the training of machine learning methods, since
the results are close to those presented in the current lit-
erature [23–25]. It is important to highlight that the per-
formance by radiologists adopting descriptors defined by
the fifth edition of BI-RADS to classify breast masses
was reported in 2016 to be only 0.690 (ROC-AUC) [26].

Table 6 Performance of different feature combinations using
the support vector machine method

Features Sensitivity (%) Specificity (%) Area under the curve

{4} 64.3 80.5 0.746

{4, 2} 67.1 76.2 0.798

{4, 2, 10} 67.1 78.8 0.807

{4, 2, 10 ,8} 68.6 76.2 0.814

{4, 2, 10 ,8 ,1} 71.4 76.9 0.840

{1}: difference area with equivalent ellipse; {2}: orientation; {4}: number of
peaks on the distance vector; {8}: entropy; {10}: lesion size

Table 7 Performance of five different machine learning methods for classifying 206 solid breast lesion on ultrasound images

Method Features Sensitivity Specificity AUC

Point estimate (%) 95% CI Point estimate (%) 95% CI Point estimate 95% CI

Decision tree {6, 1, 2, 8} 70.6 0.5889–0.8008 75.0 0.6231–0.8448 0.744 0.677–0.774

Multilayer perceptron {5, 2, 1, 3} 66.2 0.5462–0.7612 71.7 0.5843–0.8203 0.806 0.677–0.839

Random forest {4, 8, 5, 2} 72.7 0.5983–0.8181 75.9 0.593–0.811 0.811 0.710–0.892

Linear discriminant analysis {5, 2} 76.0 0.6212–0.8345 69.8 0.6156–0.8316 0.818 0.6667–0.9444

Support vector machine {4, 2, 10, 8, 1} 71.4 0.6479–0.8616 76.9 0.6148–0.8228 0.840 0.6667–0.9762

{1}: area difference with equivalent ellipse; {2}: orientation; {3}: average of difference vector; {4}: number of peaks on the distance vector; {5}: average of distance
vector; {6}: area difference between the convex hull and tumour; {7}: echogenicity; {8}: entropy; {9}: shadow; {10}: lesion size. CI Confidence interval

Fleury and Marcomini European Radiology Experimental            (2019) 3:34 Page 6 of 8



Smart Detect is a commercial system that was recently
developed by Samsung Medison (Seoul, Korea). This sys-
tem provides assistance in the morphological analysis of
breast masses seen on breast US according to BI-RADS
descriptors. There are a few studies [23, 24, 27] that
evaluate the diagnostic performance or the degree of
agreement of Smart Detect with breast radiologists. In
the study by Cho et al. [27], using the Smart Detect
system, the authors achieved a sensitivity of 72.2%, a
specificity of 90.8%, and an AUC of 0.815, a value
slightly (-0.035, 3.5%) lower than the AUC obtained in
the current study (AUC 0.840). We believe that the main
reasons for this difference, although small, were as fol-
lows: (1) in the current study, we used 4 different equip-
ment from 2 manufacturers and (2) the interpolation of
benign lesions classified as malignant. This may have
been the reasons that determined the difference in the
mass classification criteria adopted in this study
compared to Smart Detect (4, 2, 10, 8, 1 versus 4, 3, 2, 6,
5, 1). The present model recognised the lesion morph-
ology and margins as the main classifier features. Be-
cause our model was calibrated using images of different
equipment, we believe that would be more replicable in
clinical practice. The features related to the margin
showed a strong potential for the distinction between
benign and malignant lesions using machine learning
methods on ultrasound images, since its relevance was
high for all the five methods discussed.
As a limitation of the present study, we mention the

limited sample size, the way of the selection and combin-
ation of the features, and the use of 10-fold cross-
validation as a single method to evaluate the model per-
formance. As a future work, we intend to increase the
number of samples from our image database to allow the
use of other validation methods and ensure greater data
reliability, especially by using an external dataset. Another
perspective is to include new methods for selecting the
best feature set. Finally, we intend to verify the classifica-
tion performance through convolutional neural networks,
eliminating the need for feature extraction and selection.
In conclusion, we showed machine learning algorithms

applied to BI-RADS descriptors for ultrasound images of
solid masses after lesion contouring by a breast radiologist
which allow for differentiating malignant from benign tu-
mours, with the SVM approach providing an AUC of
0.840.
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