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Abstract 

Artificial intelligence (AI) has demonstrated great potential in a wide variety of applications in interventional radiol-
ogy (IR). Support for decision-making and outcome prediction, new functions and improvements in fluoroscopy, 
ultrasound, computed tomography, and magnetic resonance imaging, specifically in the field of IR, have all been 
investigated. Furthermore, AI represents a significant boost for fusion imaging and simulated reality, robotics, touch-
less software interactions, and virtual biopsy. The procedural nature, heterogeneity, and lack of standardisation slow 
down the process of adoption of AI in IR. Research in AI is in its early stages as current literature is based on pilot 
or proof of concept studies. The full range of possibilities is yet to be explored.

Relevance statement Exploring AI’s transformative potential, this article assesses its current applications and chal-
lenges in IR, offering insights into decision support and outcome prediction, imaging enhancements, robotics, 
and touchless interactions, shaping the future of patient care.

Key points
• AI adoption in IR is more complex compared to diagnostic radiology.

• Current literature about AI in IR is in its early stages.

• AI has the potential to revolutionise every aspect of IR.
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Graphical Abstract

Background
Perspectives in artificial intelligence (AI) differ and are 
more complex for interventional radiology (IR) than for 
diagnostic radiology because IR encompasses diagnostic 
imaging, imaging guidance, and early imaging evaluation 
as well as therapeutic tools [1].

Whilst diagnostic radiology is largely based on data 
acquired in a standardised format, IR, due to its proce-
dural nature, relies on mostly unstructured data. Never-
theless, preprocedural, procedural, and postprocedural 
imaging constitutes a sizable dataset when compared to 
other specialties in medicine. In addition, machine learn-
ing (ML) and data augmentation techniques reduce the 
dataset size required for effective training. ML tech-
niques exploit expedients such as in supervised learning 
(where models learn from labelled examples), few-shot 
learning (capable of generalising effectively from minimal 
examples per category), and transfer learning (leverag-
ing knowledge from one task to improve performance on 
another). Data augmentation techniques enable the crea-
tion of synthetic training examples through the trans-
formation of original data (e.g., elastic transformations, 
affine image transformations, pixel-level transforma-
tions) or from the generation of artificial data. Research-
ers have developed generative AI algorithms that 

generate artificial radiological images for training. Simi-
lar techniques could be adapted for IR obtaining more 
representative and extensive training data [1, 2].

Another factor that contributes to slowing down the 
process of adoption of AI in IR is the heterogeneous 
nature of this subspecialty. IR provides mini-invasive 
solutions for many different pathologies across multiple 
organ systems. Intraprocedural imaging, be it ultrasound 
(US), fluoroscopy, or even computed tomography (CT) 
or magnetic resonance imaging, can be heavily operator 
dependent as is the choice of the preferred percutaneous/
intravascular approach, guidance, and different devices. 
This lack of standardisation poses challenges in creating 
adequate datasets for training and implies the need for 
flexibility of AI to a number of different situations and 
options for the same task. Furthermore, being a relatively 
young technology-based subspecialty, IR is constantly 
evolving which exacerbates issues related to its inner 
heterogeneity.

AI in IR is still in its early stages. Much of the literature 
relies on preliminary and hypothetical use cases. That 
being said, AI has the potential to improve and transform 
every aspect of IR. Acknowledging that every improve-
ment of AI in diagnostic radiology affects IR more or less 
directly, in the following paragraphs, we cover the most 
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promising AI applications present in literature specifi-
cally regarding the field of IR. These applications can be 
divided into the following areas of improvement: deci-
sion-making and outcome prediction, fluoroscopy, US, 
CT, MRI, fusion imaging and simulated reality, robotics, 
touchless software interaction, and virtual biopsy, as syn-
thesised in Table 1.

Decision‑making and outcome prediction
AI support in decision-making concerns a great variety 
of fields other than IR and other specialties in medicine. 
Interventional radiologists use clinical information and 
image interpretation for diagnosis and treatment often 
relying on multidisciplinary boards to improve patient 
care due to the interdisciplinarity of IR. Tradition-
ally, clinical risk calculators have been developed using 
scoring systems or linear models validated on a limited 
patient sample. ML offers the potential to uncover non-
linear associations amongst the input variables missed by 
these older models. It could incorporate all available data, 
along with radiomic information, to perform descriptive 
analysis, assess risks, and make predictions to help tailor 
the management of a specific patient [3].

In interventional oncology, many AI applications focus 
on predicting the response of hepatocellular carcinoma 
to transarterial chemoembolisation (TACE) [4−6]. Up 

to 60% of patients with hepatocellular carcinoma who 
undergo TACE do not benefit from it despite multiple 
sessions. Patient selection guidelines for TACE are based 
on the Barcelona Clinic liver cancer—BCLC staging sys-
tem [7]. Higher arterial enhancement and grey-level 
co-occurrence matrix, lower homogeneity, and smaller 
tumour size at pretherapeutic dynamic CT texture analy-
sis were shown to be significant predictors of complete 
response after TACE [8]. However, the accuracy of this 
method is limited based on traditional statistics. Mor-
shid et  al. [4] developed a predictive model by extract-
ing image texture features from neural network-based 
segmentation of hepatocellular carcinoma lesions and 
the background liver in 105 patients. The accuracy rate 
for distinguishing TACE-susceptible versus TACE-refrac-
tory cases was 74.2%, surpassing the predictive capabil-
ity of the Barcelona Clinic liver cancer staging system 
alone (62.9%). Another study predicted TACE treatment 
response by combining clinical patient data and baseline 
MRI [9].

Sinha et al. [3] built and evaluated their AI models on 
large national datasets and achieved excellent predic-
tions regarding two different outcomes in two different 
clinical settings: iatrogenic pneumothorax after CT-
guided transthoracic biopsy and occurrence of length 
of stay > 3 days after uterine artery embolisation. Area 

Table 1 Fields of application of artificial intelligence in interventional radiology

CT Computed tomography, MRI Magnetic resonance imaging

Field of application Main results available and perspectives Literature 
references

Decision-making and outcome prediction - Morshid et al. developed a model predicting treatment response to TACE in hepatocellular 
carcinoma.
- AI models by Sinha et al. accurately predict pneumothorax and length of stay after proce-
dures.
- Daye et al. predict local tumour progression and survival in adrenal metastases.
- AI outperformed traditional radiological biomarkers in predicting stroke treatment out-
comes.
- Nielsen et al. evaluate DL model for objective TICI score in stroke treatments.

 [3–14]

Fluoroscopy - Yang et al. proposed vessel segmentation in coronary angiography using DL models.
- Ambrosini et al. introduced automatic catheter segmentation with U-Net.
- Gao et al. reduced motion artefacts in subtraction angiography with AI.
- AI-equipped fluoroscopy units reduced radiation exposure during endoscopic procedures.

 [15–20]

Ultrasound - Mwikirize et al. improved needle localisation and placement accuracy in ultrasound-guided 
procedures.

 [21, 22]

CT and MRI - DL techniques enhanced segmentation, registration, and tumour coverage evaluation 
in thermal ablation.
- AI generated synthetic CT images from cone-beam CT, aiding image guidance.

 [23–33]

Fusion imaging and simulated reality - AI is set to facilitate multimodality image fusion as proposed in other fields.
- Auloge et al. demonstrated the efficacy of AI-guided percutaneous vertebroplasty, showing 
comparable accuracy to standard fluoroscopy with reduced fluoroscopy time

 [34, 35]

Robotics - AI helped in handling multimodal data generated in robotic sensing applications.  [36–38]

Touchless software interaction - Schwarz et al. used AI to improve recognition rates of body gestures.  [39–42]

Virtual biopsy - Barros et al. developed an AI model for digital mammography, achieving high accuracy 
in classifying ductal carcinoma in situ, invasive carcinomas, and benign lesions.

 [43]
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under the receiver operating characteristic curve was 
0.913 for the transthoracic biopsy model and 0.879 for 
the uterine artery embolisation model. All model input 
features were available before hospital admission.

In another study, a ML algorithm, the model for end-
stage liver disease—MELD score, and Child–Pugh 
score were compared for predicting 30-day mortal-
ity following transjugular intrahepatic portosystemic 
shunt—TIPS. Model for end-stage liver disease and 
Child–Pugh are popular tools to predict outcomes in 
patients with cirrhosis, but they are not specifically 
designed for patients with transjugular intrahepatic 
portosystemic shunt. However, they performed better 
than AI that was still able to make predictions out of 
mere demographic factors and medical comorbidities, 
data that are absent in these scores [10].

In a pilot retrospective study, Daye et  al. [11] used 
AI to predict local tumour progression and overall 
survival in 21 patients with adrenal metastases treated 
with percutaneous thermal ablation. The AI software 
had an accuracy of 0.93 in predicting local tumour 
response and overall survival when clinical data were 
combined with features extracted from pretreatment 
contrast-enhanced CT.

In another study [12], AI outperformed traditional 
radiological biomarkers from CT angiography for 
good reperfusion and functional outcome prediction 
after endovascular treatment in acute ischemic stroke 
patients on a registry dataset with 1,301 patients. The 
predictive value was overall relatively low. Similarly, 
Hofmeister et  al. [13] obtained information on the 
success of different endovascular treatments based on 
non-contrast CT in a prospective validation cohort 
of 47 patients. A small subset of radiomic features 
was predictive of first-attempt recanalisation with 
thromboaspiration (area under the receiver operating 
characteristic curve = 0.88). The same subset also pre-
dicted the overall number of passages required for suc-
cessful recanalisation.

Mechanical thrombectomy success in acute ischemic 
stroke is commonly assessed by the thrombolysis in 
cerebral infarction (TICI) score, assigned by visual 
inspection of digital subtraction angiography dur-
ing the intervention. Digital subtraction angiography 
interpretation and subsequent TICI scoring is highly 
observer dependent. Application of AI in this setting 
has been investigated. Digital subtraction angiography 
image data are rarely used in AI due to the complex 
nature of angiographic runs. Nielsen et al. [14] evalu-
ated the general suitability of a deep learning (DL) 
model at producing an objective TICI score in case of 
occlusion of the M1 segment of the middle cerebral 
artery.

Fluoroscopy
AI has proved its utility in enhancing performance and 
diagnostic power and in facilitating the interpretation of 
fluoroscopic imaging.

Although major vessels have standard views for angio-
graphic acquisition, the angiographic characteristics are 
influenced by clinical settings, such as view angle, magni-
fication ratio, use of contrast media, and imaging system 
[44]. Most of the presented models based on angio-
graphic images have the advantage that image preproc-
essing steps were minimised or cancelled because they 
are seamlessly integrated into the DL model.

Yang et  al. [15] proposed a robust method for major 
vessels segmentation on coronary angiography using four 
DL models constructed on the basis of U-Net architec-
ture. This could be a valuable tool for target vessel identi-
fication and for easily understanding the tree structure of 
regional vasculature.

Segmentation and extraction of catheter and guide-
wire from fluoroscopic images will aid in virtual road 
mapping of the vasculature from pre-operative imaging. 
Segmentation methods for electrophysiology electrodes 
and catheter have been proposed [16, 17]. Electrodes are 
clearly visible in two-dimensional x-ray images and this 
specific feature facilitates their segmentation. Ambrosini 
et al. [18] introduced a fully automatic approach based on 
the U-Net model that can be run in real time for segmen-
tation of catheter with no specific features.

Due to the spatial inconsistency between mask image 
(no contrast agent) and live image (with contrast agent) 
caused by inevitable and complex patient motion, sub-
traction angiography usually contains motion artefacts 
and the vessels are blurred, a phenomenon known as 
inter-scan motion [44]. Numerous image coregistration 
algorithms have been proposed to reduce motion arte-
facts, but they are computationally intensive and have 
not had widespread adoption [45]. AI demonstrated bet-
ter performances than the compared registration algo-
rithms. In particular, Gao et  al. [19] trained a residual 
dense block on single live images fed into the genera-
tor and satisfactorily subtracted images as output. This 
resulted in subtraction images generated without the pre-
liminary non-contrast acquisition, avoiding the issue of 
translational motion entirely and reducing the radiation 
dose [19].

Radiation exposure to the operator remains a relevant 
issue in IR. Whilst its relevance has diminished in diag-
nostic radiology with the emergence of radiation-free 
imaging modalities and the widespread use of CT, which 
allows a safe distance from the radiation source, interven-
tional radiologists continue to rely on nearby x-rays.

Radiation exposure to both the operator and the patient 
has been significantly reduced using an AI-equipped 
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fluoroscopy unit with ultrafast collimation during endos-
copy [20]. It is easy to imagine its adaptability to IR. Dur-
ing an endoscopic procedure requiring fluoroscopy, the 
endoscopist is usually focused only on a small region of 
the displayed field of view that correlates with proce-
dural activities such as the movement of a guidewire or 
a catheter. The larger area around the region of interest 
(ROI) receives much less attention but is needed for ref-
erence and orientation purposes. With the present tech-
nology, the larger area outside the ROI is exposed to the 
same radiation dosage as the small ROI. The AI-equipped 
fluoroscopy system can minimise radiation exposure via 
a secondary collimator by constantly adjusting the shut-
ter’s lead blade orientation to block radiation to the area 
outside of the ROI for a majority of image frames and 
overlying the real-time ROI images over a full field of 
view image acquired a few frames before. Image outside 
of the ROI aids only in the orientation, and this effect 
is not perceptible to the operator. Although the ROI is 
automatically targeted using AI, there is also an optional 
provision for manual control by the operator [20].

Ultrasound
Accurate needle placement is crucial in IR procedures 
aiming at tissue sampling. Needle localisation during 
US-guided manoeuvres is not always optimal because 
of lower detection with steep needle-probe angles, deep 
insertions, reflective signal losses, hyperechoic surround-
ing tissues, and intrinsic needle visibility [46]. Further-
more, current US systems are not specifically designed 
for IR and are limited to the diagnostic aspects. Hard-
ware-based approaches for improving needle shaft and 
tip localisation, for example, external trackers and spe-
cialised needles/probes, exist [47, 48]. However, image 
processing-based methods that do not require additional 
hardware are easier to adapt in the standard clinical 
workflow.

Mwikirize et  al. [21] used a faster region-based con-
volutional neural network (Faster R-CNN) to improve 
two-dimensional US-guided needle insertion. A Faster 
R-CNN is translational invariant, allowing needles of var-
ious sizes to be inserted at different depths and insertion 
angles, and the detector will perform accurately regard-
less of the needle’s geometrical transformation. The sys-
tem allows automatic detection of needle insertion side, 
estimation of the needle insertion trajectory, and facili-
tating automatic localisation of the tip. It achieved a pre-
cision of 99.6%, recall of 99.8%, and an F1 score of 0.99 on 
scans collected over a bovine/porcine lumbosacral spine 
phantom. Accurate tip localisation is obtained even in 
cases where, due to needle discontinuity, various regions 
of the needle may be detected separately but this applies 
only to non-bending needles.

The shortage of high-quality training data from US-
guided interventions is particularly pronounced when 
compared to other imaging modalities. US is inherently 
operator dependent and susceptible to artefact. Further-
more, the manual annotation of images is more challeng-
ing and time-consuming. To address these problems, 
Arapi et  al. [22] employed synthetic US data generated 
from CT and MRI to train a DL detection algorithm. 
They validated their model for the localisation of needle 
tip and target anatomy on real in vitro US images, show-
ing promising results for this data generation approach.

CT and MRI
The efficacy of thermal ablation in treating tumours is 
linked to achieving complete tumour coverage with mini-
mal ablative margin, ideally at least 5 mm, enhancing 
local tumour control. Manual segmentation and registra-
tion of tumour and ablation zones invariably introduce 
operator bias in ablative margin analysis and are time-
consuming. The registration in particular is challenging 
due to errors induced by breathing motion and heating-
related tissue deformation. Current methodologies lack 
intra-procedural accuracy, posing limitations in assessing 
ablative margin and tissue contraction. Several retrospec-
tive studies have employed DL to address these difficul-
ties, demonstrating its utility in achieving deformable 
image registration and auto-segmentation [23–25]. The 
COVER-ALL randomised controlled trial investigated 
a novel AI-based intra-procedural approach to optimise 
tumour coverage and minimise non-target tissue abla-
tion, potentially elevating liver ablation efficacy [26]. 
Similarly, a separate study [27] demonstrates the effec-
tiveness of DL in segmenting Lipiodol on cone-beam 
CT during TACE, outperforming conventional methods. 
This would allow physicians to feel comfortable relying 
heavily on cone-beam CT imaging and using obtained 
cone-beam CT data to make predictive inferences about 
treatment success and even patient outcome.

Regarding cone-beam CT, DL techniques have been 
successfully used to generate a synthetic CT image from 
cone-beam CT imaging [28, 29] overcoming the limita-
tions in image contrast compared to multi-detector CT 
and enhancing a frequently used image guidance system 
in the IR suite.

Creating synthetic contrast-enhanced CT images has 
been proposed in diagnostic radiology [30, 31] to reduce 
usage of iodinated contrast agents. Pinnock et  al. pro-
posed a first study on synthetic contrast-enhanced CT in 
IR, which poses challenges such as organ displacement 
and needle insertion [32].

MRI-guided interventions are not widespread per-
formed in IR, and most of the time, MRI use is lim-
ited to bioptic procedures or fusion imaging [49]. 
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Needle placement is crucial even in these cases. A group 
of researchers applied three-dimensional CNNs to create 
a more sophisticated and automatic needle localisation 
system for MRI-guided transperineal prostate biopsies. 
Although some of their results were not statistically sig-
nificant, this group demonstrated a potential for ML 
applications to improve needle segmentation and locali-
sation with MRI assistance in a clinical setting [33].

Fusion imaging and simulated reality
Multimodality image fusion is increasingly used in IR 
and in a variety of clinical situations [50–56]. It allows 
the generation of a composite image from multiple input 
images containing complementary information of the 
same anatomical site for vascular and non-vascular pro-
cedures. Pixel level image fusion algorithms are at the 
base of this technology. By integrating the information 
contained in multiple images of the same scene into one 
composite image, pixel level image fusion is recognised 
as having high significance in a variety of fields. DL-based 
image fusion is currently in its early stages; however, DL-
based image fusion methods have been proposed for 
other fields such as digital photography and multimodal-
ity imaging too, showing advantages over conventional 
methods and huge potential for future improvement [34].

Simulated reality, along with AI and robotics, repre-
sents some of the most exciting technology advance-
ments in the future of medicine and particularly in 
radiology. Virtual reality and augmented reality (AR) 
provide stereoscopic and three-dimensional immersion 
of a simulated object. Virtual reality simulates a virtual 
environment whilst AR overlays simulated objects into 
the real-world background [57]. This technology can be 
used to display volumetric medical images, such as CT 
and MRI allowing for a more accurate representation of 
the three-dimensional nature of anatomical structures, 
thereby being beneficial in diagnosis, education, and 
interventional procedures.

Interacting with volumetric images in a virtual space 
with a stereoscopic view has several advantages over 
the conventional monoscopic two-dimensional slices on 
a flat panel as perception of depth and distance. Virtual 
three-dimensional anatomy/trajectory is overlaid onto 
visual surface anatomy using a variety of technologies to 
create a fused real-time AR image. The technique permits 
accurate visual navigation, theoretically without need for 
fluoroscopy.

Many studies have already utilised simulated reality 
in IR procedures [58–61]. Fritz et  al. [62, 63] employed 
AR for a variety of IR procedures performed on cadav-
ers, including spinal injection and MRI-guided verte-
broplasty. Solbiati et  al. [64] reported the first in vivo 
study of an AR system for the guidance of percutaneous 

interventional oncology procedures. Recently, Albano 
et al. [65] performed bone biopsies guided by AR in eight 
patients with 100% technical success.

The primary advantages secured by utilising AI in this 
setting include automated landmark recognition, com-
pensation for motion artefact, and generation/validation 
of a safe needle trajectory.

Auloge et  al. [35] conducted a 20-patient randomised 
clinical study to test the efficacy of percutaneous ver-
tebroplasty for patients with vertebral compression 
fractures. Patients were randomised to two groups: pro-
cedures performed with standard fluoroscopy and proce-
dures augmented with AI guidance. Following cone beam 
CT acquisition of the target volume, the AI software 
automatically recognises osseous landmarks, numeri-
cally identifies each vertebral level, and displays two/
three-dimensional planning images on the user interface. 
The target vertebra is manually selected and the software 
suggests an optimal transpedicular approach which may 
be adjusted in multiple planes (e.g., intercostovertebral 
access for thoracic levels). Once the trajectory is vali-
dated, the C-arm automatically rotates to the ‘bulls-eye 
view’ along the planned insertional axis. The ‘virtual’ 
trajectory is then superimposed over the ‘real-world’ 
images from cameras integrated in the flat-panel detec-
tor of a standard C-arm fluoroscopy machine, and the 
monitor displays live video output from the four cameras 
(including ‘bulls-eye’ and ‘sagittal’/perpendicular views) 
with overlaid, motion-compensated needle trajectories. 
The metrics studied included trocar placement accuracy, 
complications, trocar deployment time, and fluoroscopy 
time. All procedures in both groups were successful with 
no complications observed in either group. No statisti-
cally significant differences in accuracy were observed 
between the groups. Fluoroscopy time was lower in the 
AI-guided group, whilst deployment time was lower in 
the standard-fluoroscopy group.

Robotics
Robotic assistance is becoming essential in surgery, 
increasing precision and accuracy as well as the opera-
tor’s degrees of freedom compared to human ability 
alone. Its increased use is inevitable in IR where robotic 
assistance with remote control also allows for radiation 
protection during interventional procedures.

The majority of robotic systems currently employed 
in clinical practice are primarily teleoperators or assis-
tants for tasks involving holding and precise aiming. The 
advancement of systems capable of operating at higher 
autonomy levels, especially in challenging conditions, 
presents considerable research hurdles. A critical aspect 
for such systems is their ability to consistently track sur-
gical and IR tools and relevant anatomical structures 
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throughout interventional procedures, accounting for 
organ movement and breathing. The application of deep 
artificial neural networks to robotic systems helps in han-
dling multimodal data generated in robotic sensing appli-
cations [36].

Fagogenis et  al. [37] demonstrated autonomous cath-
eter navigation in the cardiovascular system using endo-
scopic sensors located at the catheter tip to perform 
paravalvular leak closure. Beating-heart navigation is 
particularly challenging because the blood is opaque and 
the cardiac tissue is moving. The endovascular endo-
scope acts as a combined contact and imaging sensor. 
ML processes camera input data from the sensor provid-
ing clear images of whatever the catheter tip is touching 
whilst also inferring what it is touching (e.g., the blood, 
tissue, and valve) and how hard it is pressing.

In an article published in Nature Machine Intelligence, 
Chen et  al. [38] described a DL driven robotic guid-
ance system for obtaining vascular access. AI based on a 
recurrent fully convolutional network—Rec-FCN takes 
bimodal near-infrared and duplex US imaging sequences 
as its inputs and performs a series of complex vision 
tasks, including vessel segmentation, classification, and 
depth estimation. A three-dimensional map of the arm 
surface and vasculature is derived, from which the opera-
tor may select a target vessel that is subsequently tracked 
in real time in the presence of arm motion.

Touchless software interaction
IR is highly technology dependent and IR suites rank 
amongst the most technologically advanced operating 
rooms in medicine. The interventionalist must interact 
with various hardware during procedures within the 
confines of a sterile environment. Furthermore, in some 
cases, this necessitates verbal communication with the 
circulating nurse or technician for the manipulation 
of computers in the room. Touchless software inter-
action could simplify and speed up direct interaction 
with computers, eliminating the need for an intermedi-
ary and thereby enhancing efficiency. For instance, one 
study utilised a voice recognition interface to adjust 
various parameters during laparoscopic surgery such 
as the initial setup of the light sources and the camera, 
as well as procedural steps such as the activation of the 
insufflator [39].

AI has emerged as an important approach to streamline 
these touchless software-assisted interactions using voice 
and gesture commands. ML frameworks can be trained 
to classify voice commands and gestures that physicians 
may employ during a procedure. These methods can con-
tribute to improved recognition rates of these actions by 
cameras, speakers, and other touchless devices [40, 41].

In a study by Schwarz et  al. [42], body gestures were 
learned by a ML software using inertial sensors worn on 
the head and body of the operator with a recognition rate 
of 90%. Body sensors eliminate issues associated with 
cameras such as ensuring adequate illumination or the 
need to perform gestures in the camera’s line of sight.

Virtual biopsy
Virtual biopsy refers to the application of radiomics for 
the extraction of quantitative information not accessible 
through visual inspection from radiological images for 
tissue characterisation [66, 67].

Features from radiological images can be fed into AI 
models in order to derive lesions’ pathological character-
istics and molecular status. Barros et  al. [43] developed 
an AI model for digital mammography that achieved an 
area under the receiver operating characteristic curve 
of 0.76 (95% confidence interval 0.72–0.83), 0.85 (0.82–
0.89), and 0.82 (0.77–0.87) for the pathologic classifica-
tion of ductal carcinoma in situ, invasive carcinomas, and 
benign lesions, respectively.

In the future, virtual biopsy could partially substitute 
traditional biopsy, avoiding biopsy complications or pro-
viding additional information to that obtained by biopsy, 
especially in core biopsies where only a small amount of 
tissue is taken from lesions that may be very heterogene-
ous. However, virtual biopsy has the disadvantage of hav-
ing low spatial and contrast resolution, with respect to 
tissue biopsy that is able to explore processes at a subcel-
lular level.

Conclusions
AI opens the door to a multitude of major improvements 
in every step of the interventional radiologist’s work-
flow and to completely new possibilities in the field. ML 
is flexible, as it learns to work for virtually any kind of 
application.

The evolution of AI in IR is anticipated to drive preci-
sion medicine to new heights. Tailoring treatment plans 
to individual patient profiles by leveraging AI-based pre-
dictive analytics could lead to more accurate diagnoses 
and optimised procedural strategies. The prospect of 
dynamic adaptation to procedural variations is on the 
horizon, potentially revolutionising treatment customisa-
tion in real-time.

AI-driven enhanced imaging capabilities, coupled with 
advanced navigational aids, are set to provide interven-
tional radiologists with unprecedented accuracy and 
real-time guidance during complex procedures. Further-
more, the integration of AI with robotics is a compelling 
avenue, potentially steering IR towards more autono-
mous procedures.
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The applications currently explored in medical litera-
ture just give a clue of what will be the real scenario in the 
future of IR. Nevertheless, AI research in IR is nascent 
and will encounter many technical and ethical problems, 
similar to those faced in diagnostic radiology. Collabora-
tive initiatives amongst healthcare institutions to pool 
standardised anonymised data and promote the sharing 
of diverse datasets must be encouraged. Federated learn-
ing is a ML approach where models are trained collabo-
ratively across decentralised devices without sharing raw 
data. It enables collaborative model development whilst 
preserving patient privacy [68].

Expectations are high, probably beyond the capabilities 
of current AI tools. A lot of work has to be done to see AI 
in the IR suite, with patient care improvement always as 
the primary goal.
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