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Abstract 

Background To compare denoising diffusion probabilistic models (DDPM) and generative adversarial networks 
(GAN) for recovering contrast‑enhanced breast magnetic resonance imaging (MRI) subtraction images from virtual 
low‑dose subtraction images.

Methods Retrospective, ethically approved study. DDPM‑ and GAN‑reconstructed single‑slice subtraction images 
of 50 breasts with enhancing lesions were compared to original ones at three dose levels (25%, 10%, 5%) using quan‑
titative measures and radiologic evaluations. Two radiologists stated their preference based on the reconstruction 
quality and scored the lesion conspicuity as compared to the original, blinded to the model. Fifty lesion‑free maxi‑
mum intensity projections were evaluated for the presence of false‑positives. Results were compared between mod‑
els and dose levels, using generalized linear mixed models.

Results At 5% dose, both radiologists preferred the GAN‑generated images, whereas at 25% dose, both radiologists 
preferred the DDPM‑generated images. Median lesion conspicuity scores did not differ between GAN and DDPM 
at 25% dose (5 versus 5, p = 1.000) and 10% dose (4 versus 4, p = 1.000). At 5% dose, both readers assigned higher 
conspicuity to the GAN than to the DDPM (3 versus 2, p = 0.007). In the lesion‑free examinations, DDPM and GAN 
showed no differences in the false‑positive rate at 5% (15% versus 22%), 10% (10% versus 6%), and 25% (6% versus 4%) 
(p = 1.000).

Conclusions Both GAN and DDPM yielded promising results in low‑dose image reconstruction. However, nei‑
ther of them showed superior results over the other model for all dose levels and evaluation metrics. Further develop‑
ment is needed to counteract false‑positives.

Relevance statement For MRI‑based breast cancer screening, reducing the contrast agent dose is desirable. Diffu‑
sion probabilistic models and generative adversarial networks were capable of retrospectively enhancing the signal 
of low‑dose images. Hence, they may supplement imaging with reduced doses in the future.

Key points 

• Deep learning may help recover signal in low‑dose contrast‑enhanced breast MRI.

• Two models (DDPM and GAN) were trained at different dose levels.
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• Radiologists preferred DDPM at 25%, and GAN images at 5% dose.

• Lesion conspicuity between DDPM and GAN was similar, except at 5% dose.

• GAN and DDPM yield promising results in low‑dose image reconstruction.

Keywords Artificial intelligence, Breast neoplasms, Contrast media, Machine learning, Magnetic resonance imaging

Graphical Abstract

Background
Current mammography-based breast cancer screening 
strategies miss lesions in women with extremely dense 
breasts. Thus, the current recommendation of the 
European Society of Breast Imaging (EUSOBI) calls for 
the introduction of magnetic resonance imaging (MRI)-
based screening for these women [1]. Breast MRI relies 
on the dynamic contrast-enhanced (DCE) sequence, 
which acquires one dynamic phase before and several 
dynamic phases after bolus injection of gadolinium-
based contrast agent (GBCA). GBCA accumulation 
visualizes perfusion associated with highly neoan-
giogenic lesions and leaky vasculature [2]. Malignant 
breast lesions, characterized by fast enhancement, can 
be detected on the first postcontrast dynamic scan [3]. 
Especially in a screening context, a lower GBCA dose is 
desirable, not only for patients with an impaired renal 
function, but also to minimize Gd deposition in the 
brain, shown to occur with linear GBCA [4], but less 

likely with macrocyclic GBCA [5]. Yet, dose reduction 
decreases contrast-to-noise ratio (CNR) in the subtrac-
tion images, as less GBCA stands against an unchanged 
noise level. Although previous reports suggest that 
reduced GBCA doses effectively depict breast lesions 
[6, 7], a high CNR remains advantageous.

Deep learning (DL) may help reduce GBCA dose 
without sacrificing image quality [8–13]. In the context 
of breast imaging, we have previously employed gener-
ative adversarial networks (GAN) to retrieve high-dose 
from low-dose virtual subtraction images [8]. To obtain 
data for training and testing purposes, the CNR of the 
original images was artificially reduced by increasing 
the noise level. Likewise, recovering the dose required 
denoising the low-dose images. Previously, the GAN 
was tailored to a fixed GBCA dose of 25% [8]. In clini-
cal application, the GBCA dose employed by different 
hospitals and in the research setting might vary. It is 
unclear, if a GAN trained on a specific CNR level (i.e., 
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GBCA dose) can be equally applied to any CNR and 
while it is technically possible to train separate GAN 
models for different input CNR levels, a more flexible 
solution is useful.

This is where denoising diffusion probabilistic mod-
els (DDPM) come into play. During training, successive 
amounts of noise are added to an input image along a 
Markov chain of “time steps” t and the DDPM is trained 
to revert this process step-by-step. In the extreme setting 
of pure noise (i.e., t is infinite) DDPMs can even gener-
ate realistic-looking images from no information [14]. 
However, in our study, we employ the ingrained denois-
ing capability of DDPMs on existing, yet noisy images. In 
detail, this study employed a DDPM to retrieve original-
dose from virtual  low-dose breast DCE-MRI subtrac-
tion images at different input noise levels and compared 
it against GAN models trained for the same purpose. We 
hypothesize that the DDPM is more flexible in the sense 
that it can denoise low-dose input images of different dose 
levels, and that it outperforms GANs across a range of 
input GBCA doses between 5 and 25% of the original dose.

Methods
Study design and data set
For this retrospective study, institutional review board 
approval was obtained (EK028/19) prior to study 

initiation. Figure  1 describes the retrieval of data 
acquired between January 2010 and November 2019 
from the local database, resulting in a final dataset of 
9,751 breast MRI examinations. Following the splitting 
as defined in [8], 9,551 examinations, i.e., 19,102 single-
sided breast examinations, were assigned to the train-
ing dataset. Please note that we have exclusively used 
the single-sided breast examinations and no additional 
patient-level information to increase the number of train-
ing images available to us and to focus on the question 
whether all relevant information is still encoded in the 
image after reduced contrast agent administration. Two 
hundred patient-stratified examinations were held out 
separately for model testing. Out of the latter, two test 
sets were composed for this study. Test set 1 included 50 
single-sided breast examinations with malignant lesions. 
Test set 2 included 50 single-sided breast examinations 
without lesions.

Image acquisition
MRI was performed according to a standardized protocol 
[15] at 1.5 T (Philips Achieva or Philips Ambition, Best, 
The Netherlands) in prone position, using a four-channel 
breast coil (Invivo, Gainesville, FL) with compression 
paddles (Noras, Höchberg, Germany) immobilizing the 
breasts along the cranio-caudal direction. Axial bilateral 

Fig. 1 Flowchart of the study, from initial retrieval to final study cohort. Please note that the initial selection of 200 test examinations was chosen 
to match the training set with previous work. MRI Magnetic resonance imaging
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T2-weighted fast spin echo images were acquired fol-
lowed by an axial bilateral T1-weighted gradient echo 
DCE series, for which one and four dynamic scans were 
performed prior to and after the injection of GBCA 
(Gadovist, Bayer, Leverkusen, Germany). First postcon-
trast subtraction images were generated on the scanner 
workstation by subtracting the baseline image from the 
first dynamic scan after contrast injection. Please note 
that field strength, breast coil, breast compression tech-
nique and the protocol remained consistent over the 
period of data acquisition. Scan parameters can be found 
in Supplementary Table S1.

Image preprocessing
To standardize the input for the DL models, we first res-
ampled all subtraction images to an in-plane resolution 
of 0.64 × 0.64  mm2 and cropped them within a rectan-
gular bounding box including the musculus pectoralis 
and both nipples. Subsequently, the cropped volume was 
divided into the left and right breast along the median 
plane. The single-sided breast images were cropped and 
zero-padded to a uniform size of 256 × 224 voxels. They 
will be referred to as original subtraction images in the 
following.

Generation of noisy test images
Mathematically, the CNR of a subtraction image can be 
decreased in two ways, that is, by decreasing the GBCA 
dose or by increasing the amount of noise. Hence, virtual 
low-dose subtraction images were simulated by adding 
white Gaussian noise to the original subtraction images. 
Details of the process have been described previously [8]. 
To train and test the performance of DL models at differ-
ent low doses, virtual subtraction images corresponding 
to 25%, 10%, and 5% GBCA doses were calculated.

DL models for GBCA dose reduction
Two types of DL models (DDPM and GAN) were imple-
mented and trained for synthetic image generation.

For the training of the DDPM [14], a cosine-noise 
schedule [16] with t = 1,000 steps was employed to add 
Gaussian noise to the original subtraction images. The 
L1 loss and the AdamW optimizer [17] with a learning 
rate of 0.0001 were used to train the DDPM. For infer-
ence, i.e., obtaining a denoised high-dose image from a 
virtual low-dose one, the noise level in the latter needed 
to be estimated to determine the corresponding starting 
point (t) in the Markov chain between the entirely noisy 
(t = T) and the denoised image (t = 0). For this purpose, 
we trained a ResNet-34 [18] separately from the DDPM. 
Controlled amounts of noise were added to original 
images using the DDPM’s cosine-noise scheduler, with 

the training objective to estimate the time t′ that corre-
sponded to the noise level in the virtual low-dose images 
(Fig. 2). The L1 loss between estimated t′ and true t was 
minimized by the AdamW optimizer with a learning rate 
of 0.0001.

We used the Pix2PixHD GAN model [19] to recon-
struct high-dose subtraction images from the low-dose 
images. Three distinct models (referred to as GAN-25, 
GAN-10, and GAN-5) were trained, using the low-dose 
images at reduced doses of 25%, 10%, or 5% next to the 
original ones as input, respectively (Fig.  2). The Adam 
optimizer [20] with a learning rate of 0.002 [21] was 
employed.

Synthetic image generation
The virtual subtraction images corresponding to 25%, 
10%, and 5% GBCA dose were first fed into the ResNet, 
which estimated the required number of time steps t′ to 
restitute the original-dose image, and then, together with 
the such identified t′, into the DDPM. The same virtual 
subtraction images were fed into the GAN-25, GAN-
10, or GAN-5 models, so that the dose level of an input 
image and the trained model were in correspondence. 
In total, 150 DDPM-reconstructed and 150 GAN-recon-
structed stacks of images were obtained per test set (i.e., 
50 for each model type and dose level, respectively), as 
well as maximum intensity projections (MIPs) along the 
axial direction.

Image analysis
Qualitative image assessment by radiologists
Radiologic evaluations were performed by two radiolo-
gists with 6 and 7 years of experience in breast imaging 
via an in-house developed browser tool. In a first experi-
ment, radiologists were presented with sets of three 
single-slice images that centrally bisected the enhancing 
lesion. Image 1 was the original subtraction image, while 
image 2 and image 3 were the GAN-reconstructed or 
DDPM-reconstructed ones. Readers were blinded to the 
nature of the model and to the input dose. Care was taken 
to present the three images with comparable windowing. 
The readers stated whether they preferred image 2 or 
image 3 as compared to the original and rated the con-
spicuity of the enhancing lesion on both reconstructed 
images on a Likert scale from 1 = poor to 5 = excellent, 
again with the original image as reference standard. In a 
second experiment, readers were presented with sets of 
two MIPs. MIP 1 was generated based on the original 
subtraction images, while MIP 2 was generated based on 
the DDPM- or the GAN-reconstructed images. Readers 
were asked to state if the synthetic MIP contained at least 
one lesion that was not visible in the original MIP.
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Numerical image assessment
To quantitatively assess the similarity or dissimilarity 
between the real and synthetic images generated by the 
DDPM and GANs, we calculated four metrics: the struc-
tural similarity index measure (SSIM) [22], peak signal-to-
noise ratio (PSNR), mean squared error (MSE) and learned 
perceptual patch similarity (LPIPS) [23]. Higher SSIM, 
higher PSNR, lower MSE, and lower LPIPS indicate higher 
agreement between two images.

Statistical analysis
Statistical evaluations were performed by T.L. using R 
(v4.3.1, R Core Team, 2021). Per dose level, two-sided bino-
mial tests were employed to evaluate if a reader’s prefer-
ence for a model was statistically different from random 
choice. Median lesion conspicuity values were calculated 
per model (“GAN,” “DDPM”), dose level (5%, 10%, 25%), 
and reader. Lesion conspicuity was then assessed by means 
of ordinal mixed effects logistic regression, using a cumula-
tive link mixed model (“clmm” from the “ordinal” package) 
with model, dose, and reader as fixed effects, while consid-
ering two-way interactions between model and dose, and 
the subject as random effect:

Score and dose were defined as ordinal variables with 
5 and 3 levels, respectively, while reader, subject, and 
model were defined as nominal variables. Similarly, the 
effects of dose and model on the occurrence of false 
positive findings were assessed by mixed effects logistic 
regression:

Here, answer constitutes a nominal variable with two 
levels. Mean SSIM, PSNR, MSE, LPIPS, and their SD 
were calculated per dose level and reader. For each met-
ric, a linear mixed effect model (“lmer” from the “lme4” 
package) was fitted as follows:

Per fitted model, estimated marginal means were cal-
culated using the “emmeans” package, on the basis of 
which pairwise post hoc tests were performed with Bon-
ferroni correction to adjust for the multiple comparison 
problem. Please note that Bonferroni correction in R 
ceils at p-values of 1.000 [24]. Where applicable, pairwise 

model < −clmm(score ∼ dose ∗model + reader + (1|subject))

model < −clmm(answer ∼ dose ∗model + reader + (1|uid))

model < −lmer(metric ∼ dose ∗model + (1|subject)

Fig. 2 Illustration of the architecture of GAN and DDPM deep learning networks. a The GAN‑25, GAN‑10, or GAN‑5 model receives the simulated 
low‑dose (25%, 10%, or 5%) image, respectively, and predicts the full‑dose image. During training, the predicted and real full‑dose images are 
compared via a loss function. b The DDPM model is trained to iteratively denoise images at different stages of noise. A ResNet was employed 
to estimate the required number of time steps t′ that are required for the trained DDPM to denoise a given low‑dose subtraction image. DDPM 
Denoising diffusion probabilistic model, GAN Generative adversarial network, ResNet Residual network
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comparison results were obtained as averaged over both 
readers. Throughout all statistical evaluations, a signifi-
cance level of 0.05 was set. The sample size of the test sets 
was chosen in line with previous studies [8, 13, 25].

Code availability
The code for the GAN model is publicly available at 
https:// github. com/ muell er- franz es/ Breas tMRI- Pix2P 
ixHD and for the DDPM model at https:// github. com/ 
muell er- franz es/ medfu sion.

Results
Patient characteristics
Table  1 presents thr demographic details of the study 
cohort. Test set 1 included 50 examinations with 29 
mass-enhancing and 21 non-mass-enhancing malig-
nant lesions. The average lesion size was 24 ± 10  mm 
(mean ± standard deviation).

Image quality decreases towards lower dose 
for both models
Figure  3a shows GAN- and DDPM-reconstructed high-
dose subtraction images of a 62-year-old woman with 
mass enhancement next to the original subtraction. His-
tology revealed a triple-negative invasive breast cancer in 
the left breast. Reducing the dose from 25 to 5% led to 
a decrease in the visual quality of reconstructed images 
for both models. Figure 3b shows an extensive segmental 
non-mass-enhancement in the left breast of a 39-year-old 
woman. Histology revealed an intermediate-grade ductal 
carcinoma in situ. The dose reduction from 25 to 5% led 
at most to a slight decrease in the visual image quality of 
the reconstructed images for both models.

Quantitative metrics confirmed the visual percep-
tion of decreased image quality with decreasing dose 
(Table  2). For example, SSIM of the DDPM decreased 
from 0.6 ± 0.1 to 0.43 ± 0.09 (mean ± standard deviation) 
(p < 0.001) as the dose decreased from 25 to 5%. Likewise, 

SSIM of the GAN decreased from 0.6 ± 0.1 to 0.4 ± 0.1 
(p < 0.001). Accordingly, linear mixed models confirmed 
a significant influence of the dose on all four metrics. The 
type of model, i.e., GAN or DDPM, reached a close-to-
significant influence on modeling the SSIM (p = 0.059), 
and a significant one for modeling MSE, PSNR, and 
LPIPS. For complete statistical results, please refer to 
Supplementary Table S2.

Readers prefer the DDPM at 25% and the GAN at 5% dose
At 25% dose, both readers preferred the DDPM-gener-
ated images (p = 0.060 and p < 0.001 for Reader-1 and 
Reader-2, respectively, with Reader-1’s preference being 
close-to, but not yet statistically significant), whereas 
at 5% dose, both readers preferred the GAN-generated 
images (p < 0.001 and p = 0.01). At 10% dose, reader pref-
erences diverged (Fig. 4).

PSNR, MSE, and LPIPS indicated a closer agreement of 
the GAN-generated images with the original subtraction 
images compared to the DDPM-generated images, inde-
pendent of the dose (Table 2), i.e., higher PSNR and lower 
MSE and LPIPS. Pair-wise comparisons of these metrics 
between GAN and DDPM at the same dose levels were 
mostly significant. SSIM of GAN and DDPM were simi-
lar at 25% and 10%, except at 5%, where DDPM images 
yielded higher SSIM (p = 0.002).

Comparable lesion conspicuity between both models, 
except at 5% dose
Higher lesion conspicuity scores were assigned at higher 
input doses by both readers (Fig.  5). At 5% dose, both 
readers rated the lesion conspicuity higher for the GAN 
than for the DDPM (median score of 2 versus 1 for 
Reader-1, 3 versus 2 for Reader-2, Table 3). It should be 
noted that Reader-2 assigned overall higher lesion con-
spicuity scores than Reader-1. Ordinal logistic regres-
sion revealed dose and reader to have a significant effect 
on the score (both p < 0.001), but not the model type 
(p = 0.130). Supplementary Table S3 indicates complete 
statistical results. According to pair-wise post hoc tests 
(Table  2), conspicuity scores did not differ significantly 
between GAN and DDPM at 25% and 10%, but at 5% 
dose (p = 0.007).

Comparable false positive lesion rate 
between both models, except at 5% dose
In the 50 lesion-free examinations, both readers observed 
false positive enhancements on the MIP images for all 
models and doses (Fig.  6). Following logistic regression, 
the type of model did not significantly influence the false 
positive rate (p = 1.000), but the dose did (p = 0.020). Sup-
plementary Table S4 indicates complete statistical results. 

Table 1 Summary of demographic data for the training dataset 
and both test datasets

Training set Test set 1 Test set 2

Country Germany Germany Germany

Patients 4,886 50 50

Examinations, total 9,551 50 50

Examinations, single‑side 19,102 50 50

Sex All women All women All women

Age (mean ± standard deviation) 56 ± 10 57 ± 10 56 ± 11

https://github.com/mueller-franzes/BreastMRI-Pix2PixHD
https://github.com/mueller-franzes/BreastMRI-Pix2PixHD
https://github.com/mueller-franzes/medfusion
https://github.com/mueller-franzes/medfusion
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Accordingly, both readers observed an increased number 
of false positive enhancements, when the dose decreased 
from 25 to 5%. Figure  7 shows a lesion-free examina-
tion in which both readers observed a false-positive 

enhancement in the GAN and the DDPM reconstructed 
images at 5% dose. In the GAN and DDPM reconstructed 
images at 10% and 25% doses, no false-positive findings 
were found.

Fig. 3 The reconstruction of a mass enhancing lesion (a) and a non‑mass enhancing lesion (b) was performed by GAN and DDPM using 25%, 
10%, and 5% reduced‑dose images. Patient A was a 62‑year‑old woman with a triple‑negative invasive breast cancer (blue arrow) in the left breast 
with a small satellite lesion ventral the main tumor (green arrow): no special type, Grade 3, stage pT1c (tumor size > 10 and ≤ 20 mm in diameter). 
Although the main lesion could be reconstructed even at 5% dose, details of its margin and the surrounding spicula are no longer discernible. 
The satellite lesion located ventral to the main tumor is still residual in the GAN 5% reconstruction, but no longer discernible in the DDPM 
5% reconstruction. Vessels are no longer discernible in detail in any of the 10% and 5% reconstructions. Patient B was a 39‑year‑old woman 
with extensive segmental intermediate‑grade ductal carcinoma in situ − DCIS (blue arrow) in the left breast. When comparing GAN 5% and DDPM 
5%, the segmental enhancement appears marginally fainter in the DDPM 5% latter reconstruction. DDPM Denoising diffusion probabilistic model, 
GAN Generative adversarial network
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Discussion
In this study, we trained a DDPM on virtual low-dose 
DCE subtraction images to recover the image con-
trast in breast MRI examinations for which only 25%, 
10%, or 5% of the body-weight dependent GBCA dose 

would have been administered and compared it with 
GAN models. Visually, the reconstructed image quality 
decreased with decreasing GBCA dose for both model 
types, reflected by corresponding changes in quantita-
tive image comparison metrics and lower lesion conspi-
cuity scores. Two radiologists independently preferred 
the DDPM-reconstructed images at 25% dose while 
they preferred the GAN-reconstructed images at 5% 
dose. Lesion conspicuity between models was rated 
similar at 25% and 10% GBCA dose but significantly 
higher for the GAN at 5% dose. Here, the quantitative 
metrics also indicated better quality of the GAN-recon-
structed images. At present, we cannot state superiority 
of one model type over the other throughout all inves-
tigated dose levels. While we trained a separate GAN 
model per investigated GBCA dose, the DDPM archi-
tecture can work with arbitrary GBCA doses.

We observed a higher lesion conspicuity in GAN-
reconstructed images compared to DDPM-recon-
structed images at 5% dose, coinciding with a 
preference of both readers for the former images. Dedi-
cated training of the GAN models at 25%, 10%, and 5% 
doses may therefore allow for higher sensitivity with 
regard to lesions in the low-dose images. However, we 
also observed a higher false positive rate with the GAN 
compared to the DDPM when the dose was reduced to 
5%, i.e., the sensitivity increased while the specificity of 
the GAN decreased as compared to the DDPM.

Table 2 Quantitative metrics of DDPM and GAN reconstructed 
images

Different metrics were calculated between the original image and reconstructed 
image. Scores are presented as mean value and standard deviation. p‑values 
indicate selected pair‑wise comparison results as obtained from mixed‑effects 
linear regression and subsequent estimation of estimated marginal means. 
During pair‑wise comparison, Bonferroni correction was applied. Significant 
p‑values are marked in bold type. DDPM Denoising diffusion probabilistic 
model, GAN Generative adversarial network, LPIPS Learned perceptual image 
patch similarity, MSE Mean squared error, PSNR Peak‑signal‑to‑noise ratio, SSIM 
Structural similarity index measure

Metric Dose GAN DDPM p-value

SSIM 25 0.6 ± 0.1 0.6 ± 0.1 1.000

10 0.5 ± 0.1 0.5 ± 0.1 1.000

5 0.41 ± 0.09 0.43 ± 0.09 0.002
PSNR 25 26 ± 2 24 ± 4 0.020

10 24 ± 4 21 ± 5  < 0.001
5 22 ± 3 20 ± 5 0.004

MSE 25 70 ± 20 90 ± 20  < 0.001
10 80 ± 20 100 ± 20  < 0.001
5 90 ± 20 100 ± 20 0.090

LPIPS 25 0.2 ± 0.2 0.3 ± 0.2 0.240

10 0.3 ± 0.1 0.4 ± 0.1  < 0.001
5 0.3 ± 0.2 0.4 ± 0.1  < 0.001

Fig. 4 Model preference depending on the input dose. a Results for Reader 1; b results for Reader 2. The two‑tailed binomial test was used 
to decide whether preference was different from random choice. Levels of statistical significance were stratified as “ns,” “*,” “**,” and “***” to indicate 
p > 0.05, 0.01 < p ≤ 0.05, 0.001 < p ≤ 0.01, and p ≤ 0.001. DDPM Denoising diffusion probabilistic model, GAN Generative adversarial network
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Our results indicate that a contrast reduction below 
25% is currently not possible using our models with-
out a substantial increase in false-positive lesions and/
or worsening of lesion conspicuity. We are not aware 
of any other study that has investigated the possibility 
to recover the image contrast based on different low 
doses. In contrast to the findings of this and our previ-
ous study [8], two studies in literature, i.e., by Chung 
et al. [25] and by Wang et al. [13], reported the retrieval 
of contrast-enhanced MRI images of the breast based 
on precontrast images only. Of note, the four studies 
differ in several important aspects, e.g., the type of DL 
model, the field strength, the number of cases employed 

Fig. 5 Lesion conspicuity scores for DDPM and GAN models. a Distribution of lesion conspicuity scores for Reader 1 and both models at 5%, 10%, 
and 25% of the original dose, respectively. b Corresponding results for reader 2. DDPM Denoising diffusion probabilistic model, GAN Generative 
adversarial network

Table 3 Lesion conspicuity per reader, model, and input dose

Values are stated as median (interquartile range). p‑values represent selected 
pair‑wise comparisons that were obtained from mixed‑effects ordinal regression 
and subsequent estimation of estimated marginal means. During pair‑wise 
comparison, Bonferroni correction was applied. Significant p‑values are 
indicated in bold type. DDPM Denoising diffusion probabilistic model, GAN 
Generative adversarial network

Dose Reader 1 Reader 2 p-value

GAN DDPM GAN DDPM

5% 2 (2) 1 (1) 3 (2) 3 (2) 0.007
10% 3 (2) 3 (1) 4 (1) 5 (1) 1

25% 4 (2) 4 (2) 5 (1) 5 (0) 1
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Fig. 6 False positive lesion rates of the GAN and DDPM Model for reader 1 (left) and 2 (right). False positive rates refer to test set 2 that contained 50 
lesion‑free examinations at 5%, 10%, and 25% dose. Both readers were asked to state if a GAN‑ or DDPM‑reconstructed MIP image contained at least 
one artificial lesion that could not be seen in the original MIP. DDPM Denoising diffusion probabilistic model, GAN Generative adversarial network, 
MIP Maximum intensity projection

Fig. 7 Image example from test set 2, showing an artificial (false‑positive) lesion. MIP images of the right breast are presented. Both readers 
found false positive enhancements in the GAN and DDPM reconstructed images (blue arrow) at 5% dose. The faint enhancement in GAN 10% 
was not classified as a false positive finding by both readers (yellow arrow). Both readers found no false positive lesion at 10% and 25% dose in GAN 
and DDPM images. The false positive finding in GAN and DDPM at 5% could be misinterpreted as a small invasive breast cancer. DDPM Denoising 
diffusion probabilistic model, GAN Generative adversarial network
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for training (and, potentially, the different lesion types 
contained therein), the complexity of the breast proto-
col, and the kind of lesions contained in the test data-
sets. Both Chung et al. [24] and Wang et al. [13] used a 
full multiparametric breast MRI protocol including dif-
fusion-weighted images, which could have led to a bet-
ter capability to predict enhancement from precontrast 
images. Interestingly, both our previous study [8] and 
the study of Chung et  al. [24] report consistently on a 
few failed, i.e., missed, non-mass enhancements, when 
using only precontrast images for training. Wang et al. 
[13] do not report any missed lesions.

When reading MIP images, both radiologists noticed 
some false-positive findings for all models and dose lev-
els. False positive findings on DL-reconstructed images 
are problematic because they require subsequent assess-
ments (e.g., rescheduling of the patient for a full-dose 
exam), which increases time spent until final diagnosis 
and raises patient concerns. Future research should there-
fore improve model performance with special emphasis 
on this aspect. For example, the addition of unenhanced 
images to the training process should be investigated, as 
they might prevent the creation of artificial lesions due to 
the added information content. The fact that no artificial 
lesions were reported for our previous study [8] (based 
on a GAN model trained at 25%, using both virtual low-
dose subtraction images and native T1- and T2-weighted 
images) supports this assumption; however, care should 
be taken because that former study did not examine arti-
ficial findings in the same lesion-free test set utilized at 
present.

Quantitative measures are frequently employed in 
studies on artificial intelligence-based image generation 
to objectify comparisons between images; yet, they may 
diverge from radiologists’ impressions [26]. This was also 
the case for a GBCA dose of 25%, where the clear prefer-
ence of the radiologists for DDPM-generated images was 
not reflected by any of the quantitative metrics. Poten-
tially, the stronger noisy-looking background, visible 
for the DDPM-generated but not for most GAN-recon-
structed and original images, led to worse performance 
of the quantitative metrics.

Both models have important methodological differ-
ences. While only one DDPM model in conjunction with 
a ResNet was needed to continuously cover the whole 
spectrum of GBCA dose levels (0 − 100%), we trained 
separate GANs per GBCA dose level (5%, 10%, and 25%). 
Therefore, a single DDPM could reconstruct original-
dose images from various GBCA doses. Although an 
institution would likely adhere to a fixed, reduced dose 
level in practice, the same DDPM could still be used for 
data from different institutions that have chosen different 
GBCA doses.

It should be noted that risks associated with contrast 
agents such as nephrogenic systemic fibrosis or allergic 
reactions are generally low [27]. As far as macrocyclic 
GBCA are concerned, there is to date no evidence for 
their deposition in the brain, and even for linear GBCA, 
cerebral GBCA deposition has not been associated with 
any clinical side effects so far [28]. However, we believe 
that techniques to reduce the dose are highly relevant in 
breast MRI, especially when thinking towards its broader 
application in a screening setting. A reduced GBCA dose 
may increase acceptance of breast MRI among patients 
who are concerned about contrast agent administration. 
Furthermore, lower GBCA concentrations may enhance 
sensitivity to contrast agent dynamics, as demonstrated 
by Pineda et al. [7]. Additionally, a dose reduction would 
be relevant for economic and environmental reasons 
[29].

New contrast agents with higher relaxivity are another 
important approach to achieve these goals. For lesion 
assessment in contrast-enhanced body MRI, a dose of 
0.05 mmol gadopiclenol per kg of body weight was shown 
to be non-inferior to a dose of 0.1 mmol gadobutrol per 
kg body weight [30]. It is important to note that high-
relaxivity contrast agents can, in principle, be combined 
with DDPM- or GAN-based methods, thereby minimiz-
ing the administered dose.

Our study has limitations. First, our models were 
trained and tested on virtual low-dose subtraction images 
only. Although this allowed the models to be trained 
on several thousand examinations, the trained models 
would still need to be tested on real low-dose examina-
tions. Unfortunately, such images were not available in 
our institution due to ethical concerns. Second, the test 
sets were of limited size, comprising only 50 single-sided 
breast examinations each. This choice was made to keep 
image readings for three different dose levels and two 
models within reasonable time limits. Third, we did not 
investigate any potentially beneficial effects of including 
the precontrast images into the models training, which 
could provide a useful route to decrease unwanted false-
positive findings.

In conclusion, both GAN and DDPM have shown 
promising results in low-dose image reconstruction. Yet, 
neither model type yielded superior results over the other 
one for all tested dose levels and evaluation metrics. Fur-
ther studies are needed to determine which of the two 
methods is better suited for GBCA reduction.
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