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Abstract 

Background We aimed to improve the image quality (IQ) of sparse-view computed tomography (CT) images using 
a U-Net for lung metastasis detection and determine the best tradeoff between number of views, IQ, and diagnostic 
confidence.

Methods CT images from 41 subjects aged 62.8 ± 10.6 years (mean ± standard deviation, 23 men), 34 with lung 
metastasis, 7 healthy, were retrospectively selected (2016–2018) and forward projected onto 2,048-view sinograms. 
Six corresponding sparse-view CT data subsets at varying levels of undersampling were reconstructed from sino-
grams using filtered backprojection with 16, 32, 64, 128, 256, and 512 views. A dual-frame U-Net was trained and eval-
uated for each subsampling level on 8,658 images from 22 diseased subjects. A representative image per scan 
was selected from 19 subjects (12 diseased, 7 healthy) for a single-blinded multireader study. These slices, for all levels 
of subsampling, with and without U-Net postprocessing, were presented to three readers. IQ and diagnostic confi-
dence were ranked using predefined scales. Subjective nodule segmentation was evaluated using sensitivity and Dice 
similarity coefficient (DSC); clustered Wilcoxon signed-rank test was used.

Results The 64-projection sparse-view images resulted in 0.89 sensitivity and 0.81 DSC, while their counterparts, 
postprocessed with the U-Net, had improved metrics (0.94 sensitivity and 0.85 DSC) (p = 0.400). Fewer views led 
to insufficient IQ for diagnosis. For increased views, no substantial discrepancies were noted between sparse-view 
and postprocessed images.

Conclusions Projection views can be reduced from 2,048 to 64 while maintaining IQ and the confidence of the radi-
ologists on a satisfactory level.

Relevance statement Our reader study demonstrates the benefit of U-Net postprocessing for regular CT screenings 
of patients with lung metastasis to increase the IQ and diagnostic confidence while reducing the dose.

Key points 

• Sparse-projection-view streak artifacts reduce the quality and usability of sparse-view CT images.

• U-Net-based postprocessing removes sparse-view artifacts while maintaining diagnostically accurate IQ.

• Postprocessed sparse-view CTs drastically increase radiologists’ confidence in diagnosing lung metastasis.
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Graphical Abstract

Background
Lung cancer maintains the highest mortality rate for 
malignancies around the globe, with more than 2.2 mil-
lion new cases recorded worldwide in 2020 [1, 2]. More 
than half of all cancerous lung tumor diagnoses have 
reached a progressive stage by the time patients pre-
sent with symptoms [3]. Regular screenings enable early 
detection and thereby increase survival rates [3, 4].

Computed tomography (CT) is considered standard 
practice in present-day medicine for diagnosing lung 
nodules [4–6], but this comes with the cost of radiation 
exposure [7, 8]. To make regular screenings possible, a 
tradeoff between radiation dose and image quality (IQ) 
must be found [4]. Sparse-view CT is a technique for 
dose reduction. However, this technique leads to a deg-
radation of image quality due to distinct streak artifacts 
caused by a limited number of projection views in the 
reconstruction process [9, 10].

Machine learning approaches have shown promising 
results for sparse-view artifact correction [9–14]. Spe-
cifically, residual learning has delivered superior results 
compared to the direct approach [11, 12]. The goal of the 
network in residual learning is to estimate the difference 
between sparse-view and full-view images. In a direct 
approach, the network aims to predict the artifact-free 

image. The simpler topological structure of residual 
images allows for more efficient learning [12]. A popular 
network architecture for such artifact-correction tasks is 
the U-Net [15]. With a large receptive field, the model is 
capable of handling global artifacts such as the sparse-
view streak artifacts [11, 12]. The dual-frame U-Net was 
proposed as a more robust variant of the standard U-Net 
for the task at hand [13].

In this work, we assess the performance of the dual-
frame U-Net in correcting for streak artifacts present in 
sparse-view CT scans of the lung with metastasis [13]. 
An image reconstructed from 2,048 views, later referred 
to as a full-view image, was taken to calculate the residual 
image. Six levels of subsampled input images were recon-
structed from 16, 32, 64, 128, 256, and 512 views, respec-
tively. By conducting a reader study with the unprocessed 
sparse-view images and their U-Net postprocessed coun-
terpart images, we aim to find the best tradeoff between 
the number of views, IQ, and confidence of the partici-
pating radiologists on their diagnosis.

Methods
The code is available at https:// github. com/ tidor osti/ 
Reader- Study_ UNet- Proce ssed- Lung- Cancer- CT.

https://github.com/tidorosti/Reader-Study_UNet-Processed-Lung-Cancer-CT
https://github.com/tidorosti/Reader-Study_UNet-Processed-Lung-Cancer-CT
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Datasets
We received approval from the institutional review 
board, and the requirement for written informed con-
sent was waived, as all original data (acquired between 
January 2016 and December 2018) was analyzed anony-
mously and retrospectively. Seven CT images from seven 
subjects without lung metastasis, additional pleural effu-
sion, atelectasis, or other lung diseases were selected as 
the healthy controls. A total of 16,023 CT images from 
42 subjects were considered for the diseased group such 
that all images presented exactly one lung metastatic 
nodule of size roughly from 1 to 2 cm in diameter. As we 
aimed to focus solely on subjects with lung metastasis 
and without other lung diseases, the following exclusion 
process was applied: after the elimination of cases with 
perihilar localization of metastases, 14,578 images from 
38 subjects remained. Next, images with pleural effusion, 
atelectasis, or other lung diseases were removed. Finally, 
8,670 images from 34 subjects with metastatic lung nod-
ules were selected as the diseased group. The complete 
dataset consisted of 8,677 images from 41 subjects (34 
diseased and 7 healthy subjects). From this, independ-
ent datasets were utilized for model assessment (8,658 
images from 22 diseased subjects) and the reader study 
(19 images corresponding to one image per subject; 12 
diseased and 7 healthy subjects). Additional 9,481 images 
from the Luna16 external dataset [16, 17] were utilized 
for testing the model’s robustness. Table 1 shows the sub-
ject demographics for the internal datasets.

Data preparation
The CT images were forward projected onto 2,048-view 
sinograms. Sparse-view CT data subsets at varying lev-
els of undersampling were generated using the filtered 
back projection algorithm with 16, 32, 64, 128, 256, and 
512 views, respectively. The full-view data was generated 
using 2,048 views. All operations were performed using 
the Astra toolbox (version 2.1.1) [18–20]. Images were 
of size 512 × 512 pixels. The intensity values of all images 
were clipped to the lung CT window (width 1,700, level 

-600 HU) and normalized to a range between zero and 
one.

Twenty-two of the diseased subjects were split on CT 
scan level into train (n = 12, images = 4,723), validation 
(n = 2, images = 787), and test sets (n = 8, images = 3,148). 
The residual ground truth label images were calculated as 
the difference between the full-view and the sparse-view 
images for each projection view. The final postprocessed 
image was the pure-artifact U-Net prediction subtracted 
from the sparse-view input.

Network architecture
The dual-frame U-Net was utilized, as depicted in Fig. 1. 
The contracting path consists of four subsequently 
applied encoder blocks, each with two convolution lay-
ers (3 × 3 kernels, followed by batch normalization and 
a rectified linear unit activation). A 2 × 2 max pooling 
layer is applied after each encoder block. Following the 
two convolution layers in the bottleneck, the features 
are upsampled with four subsequently applied decoder 
blocks mirroring the contracting path via a 2 × 2 upsam-
pling with nearest neighbor interpolative resizing before 
each decoder block. The dual-frame U-Net introduces 
additional skip connections, bridging the output of each 
encoder block after pooling to the input of the associ-
ated decoder block before upsampling. These additional 
connections ensure the frame condition is met, thereby 
reducing blurring and image artifacts. The final image is 
obtained with a 1 × 1 convolution [13].

A train-validation-test split method was chosen instead 
of a cross-validation method due to time and computa-
tion constraints. The training data was randomly selected 
from all the available internal data on a patient level using 
Python’s built-in random function. The proposed model 
was additionally tested on an external test set to ensure 
the robustness of the final model, and it was concluded 
that the train-validation-test split method did not hinder 
model performance.

An NVIDIA RTX A4000 graphics card with 16 GB of 
VRAM was utilized to train this dual-frame U-Net with 

Table 1 Subject demographics for internal datasets (n = 41)

Age is given as mean ± standard deviation

Dataset Model assessment Multireader study

Subset Train Validation Test Healthy Diseased

Parameter 

Male 5 2 4 5 7

Female 7 0 4 2 5

Age (years) 65.8 ± 11.6 77.0 ± 4.00 61.9 ± 11.8 44.3 ± 14.4 64.8 ± 9.25

Total CT images 4,723 787 3,148 7 12
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21,971,584 parameters. The network was implemented 
by the Keras interface of the TensorFlow library (version 
2.4.0), randomly initialized, and trained individually for 
each number of projection views [21, 22]. The sparse-
view images were taken as input, and the residual images 
were taken as labels. No data augmentation was applied 
as the model achieved comparable results for the train-
ing and validation set without overfitting. Mean squared 
error (MSE) loss with an adaptive moment estimation 
optimizer was utilized. Early stopping was implemented 
if validation loss did not improve. Training took place for 
a maximum of n = 30 epochs and a batch size of six. The 
initial learning rate lr was set to lr = 0.001 and decayed 
exponentially per epoch following lrn = lrn−1 · e

−0.1. The 
model with the smallest validation loss among all epochs 
was chosen for inference on the test sets and the reader 
study. The quality of postprocessed images was evaluated 
with the MSE and the structural similarity index measure 
(SSIM) metrics [23].

The dual-frame U-Net was chosen as it generated 
robust outputs and had a comparable computational 
effort as the standard U-Net. More specifically, The test 
data was analyzed with both the dual-frame and the 
standard U-Net, and there were no major differences in 
the MSE and SSIM values between the two models. Fur-
thermore, the number of model parameters and the com-
putation time were also comparable. Lastly, our expert 
radiologist (D.P.) examined the data and concluded that 
images postprocessed with the dual-frame U-Net more 
accurately display medically relevant structures, such as 
small vessels.

Multireader study and statistical analysis
CT scans from 19 subjects (12 diseased, 7 healthy) were 
considered for this single-blinded study. Three board-cer-
tified radiologists and an in-training radiologist, respec-
tively with 15 (D.P.), 11 (A.S.), 10 (F.M.), and 5 (D.S.) 
years of experience in chest radiology, participated in the 
study. Using the full-view images, D.P. selected a repre-
sentative slice per subject and marked the ground truth 
lung nodule segmentation ( 1.11[0.91, 1.31]cm diameter 

given as mean with 95% confidence interval) for the dis-
eased subjects. All nodules were confirmed metastases 
by biopsy, patient history, and follow-up procedures. The 
sparse-view images reconstructed from 16, 32, 64, 128, 
and 256 views and postprocessed by the U-Net were pre-
sented to the other three radiologists, resulting in a total 
of 190 evaluated images per reader.

Full-view and all sparse-view images of an exemplary 
slice are shown in Fig. 2. Slices reconstructed and post-
processed using 512 views were excluded from the study 
as D.P. determined that even without any postprocessing, 
they are of comparable quality to the full-view images.

Readers were asked to independently annotate each 
slice using our in-house tool by rating every image on 
quality, the confidence of diagnosis, and the severity of 
artifacts present in the image according to pre-defined 
labels in Tables  2 and 3. Furthermore, the radiolo-
gists were asked to independently segment perceived 
suspect pulmonary nodules. Sensitivity, specificity, F1 
score, and the negative predictive value, were consid-
ered to compare the diagnostic reliability of images for 
different views [24]. For all true positive cases, the seg-
mentation overlaps were calculated with the Dice simi-
larity coefficient (DSC) [25, 26]. In case of no overlap, 
or if one of the segmentations was empty, the resulting 
DSC was zero.

The superiority of the postprocessed labeled data 
over the sparse-view labeled data for each view was 
assessed: p-values were calculated with the clustered 
Wilcoxon signed-rank test utilizing Python’s SciPy 
library (version 1.4.1), and a significance threshold of 
0.05 was set [27, 28]. The sample size for the reader 
study was n = 57 after pooling the results from the 
three readers, with each having annotated 19 CT 
images.

Results
The following results show the model’s performance 
on 3,148 images from eight diseased subjects and 9,481 
images from the Luna16 dataset. Furthermore, results 
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Fig. 1 The architecture of the dual-frame U-Net. The model takes as input the unprocessed sparse-view images and outputs the pure artifact 
residual image. An example of 16 projection sparse-view input and corresponding residual output is shown. The number of channels is provided 
above each layer
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of the reader study on 19 CT-wise images from 12 dis-
eased and seven healthy subjects are described.

Network performance
Figure  2 shows an example slice with varying levels of 
subsampling alongside the corresponding U-Net post-
processed results. It can be observed that fewer pro-
jection views result in more artifacts. The sparse-view 
images from extremely limited views also lead to a loss of 
structural integrity in their postprocessed counterparts. 
This was especially prominent for 16 views, as metastatic 
lung nodule distortion and microvascular structures 
generate diminished performance capabilities. Meta-
static nodule composition and primary anatomical char-
acteristics can better be amassed once reconstruction 

views have increased to 32. For 64 views, streak artifacts 
did not impact the nodule’s visibility due to tissue den-
sity, but minimalistic structural identification, such as 
small vessels, are not clearly portrayed. Minor features 
were displayed for 128 and 256 views; however, for 128 
views, some streak artifacts remained present. For the 
postprocessed image of 32 views, the nodule shape was 
mostly correct, and the display of the vascular struc-
tures was improved. For 64 or more views, the nodule 
appearance in the postprocessed image was similar to 
the full-view image. Furthermore, vascular distinction 
on imaging can be detected with the postprocessed 128-
view image. The postprocessed image from 256 views is 
very close in quality to the full-view image. For 512 views, 
no qualitative differences can be detected.

A directly proportional relationship is observed 
between improved IQ and higher views. As shown in 
Table 4, calculated mean MSE values decrease and mean 
SSIM values increase with more projection views for 
the internal test set and the external Luna16 dataset. 
Although mean MSE and SSIM values are marginally 
better for the internal test set, the model achieves compa-
rable results on the external Luna16 dataset.

Multireader study
The resulting mean values for quality, confidence, and 
artifacts reported by the readers are shown in Fig.  3a–
c. The labeled mean quality for sparse-view images 
decreases linearly from roughly “sufficient” to approxi-
mately “not diagnostic” for decreasing number of pro-
jection views, as seen in Fig.  3a. Figure  3b shows that 
the tendency for the mean confidence is similar for 
both sparse-view and postprocessed images. For the 

Fig. 2 An example computed tomography (CT) image reconstructed with full-view and sparse-view projections, with and without postprocessing 
by the dual-frame U-Net. The image on the left demonstrates the ground truth full-view image without postprocessing. The top row shows the CT 
image reconstructed with different sparse-view projections without postprocessing. The bottom row depicts the respective sparse-view images 
postprocessed by the U-Net model for each projection view. The region of interest (blue box) shows the metastasis (highlighted by the yellow 
arrow). All images are clipped to the lung window and include an iodined contrast medium. Scale bar in the full-view image = 5 cm

Table 2 Score system for image quality and diagnostic confidence

Score Image quality Confidence

1 Not diagnostic Not confident at all

2 Highly impaired Slightly confident

3 Impaired Somewhat confident

4 Sufficient Fairly confident

5 High Very confident

6 Very high Surely confident

Table 3 Score system for image artifacts

Score Image artifacts

1 No artifacts

2 Few artifacts and quality not impaired

3 Some artifacts and reduced quality

4 A lot of artifacts and reduced quality
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Table 4 Mean MSE and SSIM

Postprocessed images in the internal test set and the external Luna16 dataset for all projection views are presented by the mean value and the corresponding 95% 
confidence intervals of the mean squared error (MSE) and structural similarity index measure (SSIM) metrics

Metric Dataset 16 projections 32 projections 64 projections

MSE Test set 2.36 [1.95, 2.78] ∙  10-3 7.95 [6.51, 9.39]∙10-4 2.40 [1.96, 2.84] ∙  10-4

Luna16 6.52 [4.93, 8.10] ∙  10-3 3.46 [2.49, 4.43]∙10-3 1.04 [0.746, 1.34] ∙  10-3

SSIM Test set 0.799 [0.749, 0.809] 0.834 [0.808, 0.861] 0.895 [0.873, 0.917]

Luna16 0.782 [0.758, 0.805] 0.816 [0.792, 0.840] 0.873 [0.852, 0.895]

128 projections 256 projections 512 projections
MSE Test set 8.46 [6.31, 10.6] ∙  10-5 2.28 [1.54, 3.01] ∙  10-5 3.78 [2.81, 4.75] ∙  10-6

Luna16 6.19 [4.18, 8.19] ∙  10-4 1.07 [0.810, 1.32] ∙  10−4 5.34 [3.93, 6.75] ∙  10-5

SSIM Test set 0.938 [0.920, 0.955] 0.979 [0.973, 0.985] 0.997 [0.996, 0.997]

Luna16 0.908 [0.889, 0.927] 0.960 [0.950, 0.969] 0.983 [0.980, 0.986]

256 Sparse
256 Processed
128 Sparse
128 Processed
64 Sparse
64 Processed
32 Sparse
32 Processed
16 Sparse
16 Processed
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Fig. 3 Mean over image quality (a), diagnostic confidence (b), severity of artifacts (c), and Dice similarity coefficient values (d) for lung nodule 
segmentations for 19 sparse-view images with (processed) and without postprocessing (sparse) by the dual-frame U-Net, labeled by three readers 
(n = 57). Scales defined for all labels are given in Tables 2 and 3
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sparse-view images, the confidence again decreases lin-
early with decreasing number of views, ranging from 
“fairly confident” or “very confident” to “not confident 
at all” or “slightly confident.” The subjective quality 
(p = 0.002) and confidence (p = 0.020) of postprocessed 
images are significantly higher than their unprocessed 
pairs for 64 and fewer views. The presence of artifacts 
increases for the sparse-view images with fewer views, 
as observed in Fig. 3c. Postprocessed images have signifi-
cantly fewer subjective artifacts than their unprocessed 
pairs for 128 and fewer projection views (p < 0.001).

Confusion matrices are shown in Fig.  4. The corre-
sponding sensitivity, specificity, F1 score, and negative 
predictive values are shown in Table 5. In some images, 
incorrect subjective segmentation by the readers resulted 
in falsely marked pixels in an alternate location. Such 
cases are counted as false negatives and mostly appeared 
for the sparse-view images reconstructed with 16 views. 
An example of such an inaccurately marked image, as 
well as a correctly marked image, and an image with an 
extra perceived nodule, are shown in Fig. 5.

The confusion matrices in Fig. 4 show increasing false 
negative cases with a decreasing number of views for 
the sparse-view images and their postprocessed coun-
terparts. This leads to a decreased sensitivity, as seen 
in Table 5. The symmetric representation of true posi-
tive rate and sensitivity is understood with the F1 score: 
For 256 and 64 views, the F1 score remains unchanged 
among the sparse-view and the postprocessed pairs. 
For all other projection views, the F1 score is higher for 
the sparse-view images. Furthermore, the number of 
false positive cases is mostly independent of the num-
ber of views, which leads to specificity values between 
0.86 and 1.00. The negative predictive value decreases 
with decreasing projection views for both sparse-view 
and postprocessed images. However, only for 64 views 
do the postprocessed images achieve a higher nega-
tive predictive value compared to their sparse-view 
counterparts.

Figure  3d shows the mean DSC for sparse-view 
images with and without postprocessing by the model. 
The mean DSC shows only slight differences between 

Fig. 4 Confusion matrices for sparse-view CT images and their postprocessed counterpart images for all projection views were calculated over 19 
subject-wise images presented to three readers (n = 57)

Table 5 Sensitivity, specificity, F1 score, and negative predictive value (NPV) for sparse-view CT images and their postprocessed 
counterpart images for all projection views calculated over 19 subject-wise images presented to three readers (n = 57)

16 projections 32 projections 64 projections 128 projections 256 projections

Processed Sensitivity 0.19 0.83 0.94 0.97 0.97

Specificity 0.90 0.95 0.90 0.90 0.90

F1 score 0.31 0.90 0.94 0.96 0.96

NPV 0.40 0.77 0.90 0.95 0.95

Sparse Sensitivity 0.44 0.83 0.89 1.00 1.00

Specificity 0.86 1.00 1.00 0.95 0.86

F1 score 0.62 0.91 0.94 0.99 0.96

NPV 0.51 0.78 0.84 1.00 1.00
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sparse-view images with and without postprocessing for 
32 or more views. For instance, in the case of 64 views, 
sparse-view images without postprocessing resulted in 
DSC = 0.81, while images postprocessed by the model 
had reached DSC = 0.85 (p = 0.400). It must be noted 
that although no statistically significant discrepancy 
in segmentation overlap is observed, subjective qual-
ity (p = 0.002) and confidence (p = 0.020) assessment 
was markedly higher in the postprocessed images of 64 
views and fewer.

Discussion
We implemented a postprocessing correction with a dual-
frame U-Net based on a residual approach to improve 
the IQ of sparse-view CT images with lung metastasis. 
External evaluation with a public dataset demonstrated 
the model’s robustness. Furthermore, a single-blinded 

reader study determined a tradeoff between the num-
ber of projection views, IQ, and diagnostic confidence. 
The results suggest that postprocessing by the U-Net can 
reduce the number of views from 2,048 to only 64 while 
maintaining diagnostically accurate IQ for nodule detec-
tion (sensitivity = 0.94). Although the DSC for the lung 
nodule segmentations by the readers did not significantly 
improve for the postprocessed images, the sparse-view 
artifact-corrected images drastically increased the read-
ers’ confidence in detecting lung nodules.

It must be noted that every image labeled as “not diag-
nostic” in terms of IQ or “not confident at all” in terms 
of confidence of diagnosis would not be considered in a 
clinical workflow. This is especially the case for sparse-
view images reconstructed from 16 views but also for 
some sparse-view images reconstructed from 32 views. 

Fig. 5 Examples of metastasis segmentations. A correctly marked nodule, true positive (TP), and two incorrectly segmented regions, namely 
false negative (FN) and false positive (FP), are shown. FP refers to the case where the perceived metastasis was nonexistent. FN refers to the case 
where the perceived nodule had no overlap with the ground truth segmentation. The top row shows the overlay of the ground truth segmentation 
(yellow) and the segmentation marked by the reader (blue) over the full-view image. The bottom row shows the sparse-view image, reconstructed 
from 16 projection views with or without postprocessing, presented to the readers for marking lung nodules. All slices are clipped to the lung 
window and include an iodined contrast medium. Scale bar = 5 cm
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Thus, these instances will not be considered for further 
discussion.

All images postprocessed by the model are labeled with 
better IQ and diagnostic confidence. More precisely, the 
difference between sparse-view images with and with-
out postprocessing is the most prominent result for all 
assigned labels. It indicates that the radiologists prefer 
working with the postprocessed images over the unpro-
cessed sparse-view ones: rating the quality higher, seeing 
fewer artifacts in the images, and most importantly, being 
more confident in their diagnosis. Especially the higher 
quality and the increased confidence could be accompa-
nied by a shorter processing time and, in the long run, 
lead to fewer signs of fatigue compared to working with 
unprocessed sparse-view images. Since 256, 128, and 64 
views lead to very similar results regarding the quality 
and confidence labels and worse results are achieved with 
32 views, 64-view images appear to be the best choice.

To define a threshold providing a reasonable tradeoff 
between a reduced number of projection views and diag-
nostic value, sensitivity and specificity values should be 
maximized. Accordingly, false positive and false negative 
values should be minimized–false positive cases should 
be avoided as these cause unnecessary follow-up proce-
dures, potentially exposing the patient to more radiation 
if a full-view scan is required. However, it is of utmost 
importance to avoid false negative cases since these 
would lead to afflicted patients not getting diagnosed. 
Low false positive cases are correlated with high speci-
ficity, and low false negative values are associated with 
high sensitivity.

We must consider other existing work in the literature 
to establish concrete baseline threshold values for sensi-
tivity and specificity. However, finding fitting pre-defined 
thresholds for sensitivity and specificity values proves 
difficult in the extant literature. This is mainly due to 
the challenges of establishing a truth value from which 
the performance of radiologists in lung nodule detec-
tion should be assessed [29]. Furthermore, the variabil-
ity in study design and data are limiting factors [29, 30]. 
Nonetheless, we take the values presented in the National 
Lung Screening Trial by Aberle et al. [31] as the closest 
established baselines to which we can compare the values 
obtained in our study: these are a sensitivity threshold 
of 0.94 and a specificity threshold of 0.73. According to 
these thresholds, the lowest possible number of projec-
tion views allowing reliable diagnosis would be achieved 
for postprocessed images of 64 views, leading to 0.94 sen-
sitivity and 0.90 specificity.

The mean DSC values did not consistently show a 
trend of improvement between the postprocessed and 
the unprocessed sparse-view images. Yet, these findings 
support the choice of the tradeoff threshold at 64 views; 

the mean DSC values for the postprocessed images of 
64 views resulted in the greatest improvement over the 
mean DSC values of their unprocessed counterparts in 
comparison to the other projection views.

Some study limitations must be considered. In clini-
cal practice, radiologists often search the entire stack 
of images for malignancies. The present reader study 
could have modeled the clinical workflow more pre-
cisely as it only considered single CT images. Includ-
ing neighboring slices would come closer to clinical 
diagnosis based on CT scans and most likely reduce the 
amount of falsely classified patients. Furthermore, the 
sparse-view data generated for this study was obtained 
using simplified conditions not reflective of the com-
plex reconstruction processes in clinical settings. 
Therefore, only the reduced number of projection views 
compared to the full-view images can be reported, and 
an exact measure of dose reduction is hence unachiev-
able. Our relatively small sample size was also a limiting 
factor, which can be addressed in future works. Addi-
tionally, testing for noninferiority or equivalence of 
U-Net-based postprocessing with the existing methods 
needs further exploration before integration of such 
technologies in the medical workflow.

Overall, the amount of projection views can be 
reduced by a factor of 32 compared to the full-view 
image with postprocessing by a dual-frame U-Net while 
keeping the diagnostic value and the confidence of the 
radiologists at a satisfactory level. Regarding the radi-
ologists’ confidence, the images postprocessed with the 
model lead to drastically better results than the unpro-
cessed sparse-view images. These findings suggest that 
postprocessed sparse-view CT images by the dual-
frame U-Net could help enable dose-efficient screening 
for lung metastasis detection.
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